
Lab 5 Solutions
Stats 32: Introduction to R for Undergraduates

Harrison Li

04/16/2024

Note: The content of this lab is partially borrowed from Kenneth Tay’s course materials in the Autumn 2019
iteration of this course.

Today we’ll be working with the diamonds dataset from the ggplot2 package. We want to understand the
distribution of diamond prices.

Let’s load the ggplot2 package and the diamonds dataset. It’s part of the tidyverse. Look at the documen-
tation to understand what the dataset is about.
library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data(diamonds)
?diamonds

As usual, we can use str() or head() to get a birds’ eye view of the dataset:
str(diamonds)

tibble [53,940 x 10] (S3: tbl_df/tbl/data.frame)
$ carat : num [1:53940] 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
$ depth : num [1:53940] 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
$ table : num [1:53940] 55 61 65 58 58 57 57 55 61 61 ...
$ price : int [1:53940] 326 326 327 334 335 336 336 337 337 338 ...
$ x : num [1:53940] 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
$ y : num [1:53940] 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
$ z : num [1:53940] 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
head(diamonds)

A tibble: 6 x 10
carat cut color clarity depth table price x y z

1

<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

Histograms
A histogram is useful for visualizing the distribution of a single quantitative variable.

Let’s start with a simple histogram of price:
diamonds %>%

ggplot(aes(x=price)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0

5000

10000

0 5000 10000 15000 20000
price

co
un

t

Let’s say you wanted to see the histogram binned every $1,000. This can be done using the binwidth
argument (see help menu for geom_histogram()):
diamonds %>%

ggplot(aes(x=price)) +
geom_histogram(binwidth=1000)

2

0

5000

10000

15000

0 5000 10000 15000 20000
price

co
un

t

Hmm. . . the bins are not aligned with 0. This is because geom_histogram() starts binning based on the
lowest observed value, which is above 0:
min(diamonds$price)

[1] 326

It’s probably more natural to have the bins align with the even $1,000’s. This can be done by specifying the
boundary argument:
diamonds %>%

ggplot(aes(x=price)) +
geom_histogram(boundary=0, binwidth=1000)

3

0

5000

10000

15000

0 5000 10000 15000
price

co
un

t

Lastly we can change the bar outline color and the fill. If these are static values, remember NOT to specify
these inside aes():
diamonds %>%

ggplot(aes(x=price)) +
geom_histogram(boundary=-1000000, binwidth=1000, colour="yellow", fill="darkgreen")

4

0

5000

10000

15000

0 5000 10000 15000
price

co
un

t

Based on the histogram, it is clear that the distribution of diamond prices is quite right-skewed. That is, the
histogram has a long right tail. A right-skewed distribution has a small number of observations far above the
typical values. Right-skewed data tend to have an average higher than the median. Recall the median of a
set of numbers is the value v for which (approximately) 50% of observations are below v, and the other 50%
are above v. Thus, for right-skewed data, less than half the observations will be above the mean. We will
investigate this further in the homework.

On the other hand, a left-skewed distribution is characterized by a histogram with a long left tail. These
distributions have a small number of observations far below the typical values. The abalone lengths from
lecture are moderately left skewed.

1. Suppose I have some quantitative variable that is right-skewed. If I multiply all the values by -1, will it
remain right-skewed, become left-skewed, or neither? Justify your answer.

Answer: Left-skewed, since multiplying by -1 flips the ordering of the data, so that after multiplying by -1 we
will have a small number of observations far above the typical value.

2. Load the flights tibble from the nycflights13 package, and generate a histogram of departure delays
for all flights departing from JFK airport.

Answer:
library(nycflights13)
flights %>%

ggplot(aes(x=dep_delay)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 8255 rows containing non-finite values (`stat_bin()`).

5

0e+00

1e+05

2e+05

0 500 1000
dep_delay

co
un

t

Boxplots
An alternative visualization for the distribution of a single quantitative variable is a boxplot:
diamonds %>%

ggplot(aes(y=price)) +
geom_boxplot()

6

0

5000

10000

15000

−0.4 −0.2 0.0 0.2 0.4

pr
ic

e

The dark line around 2,500 represents the median of the data. The lower and upper edges of the box
correspond to the first and third quartiles, respectively, a.k.a. the 25th and 75th percentiles.

3. What is the exact median price in the diamonds tibble?

Answer:
median(diamonds$price)

[1] 2401

By definition, around 25% of diamonds (in the tibble) had a price below the first quartile. Around 25% of
diamonds had a price higher than the third quartile. About 50% of diamonds had a price below (or above)
the median. Note these percentages are not exact due to different ways on how to handle rounding.

The interquartile range (IQR) is defined as 3rd quartile minus 1st quartile.

The vertical lines above and below the box (“whiskers”) extend out to the furthest observations within
1.5*IQR above and below the median (the 1.5 multiplier can be changed using the coef argument).

Finally, the dots above the top of the upper whisker (there are a lot, so they kind of look like a thicker
vertical line) are all observations more than 1.5 times the IQR above the median. Such observations far from
the center are typically called outliers (note that there is no single standard definition of an outlier; whether
a data point is an outlier is a mostly qualitative judgment, and depends on context). There are no dots below
the bottom whisker, since the minimum price is less than 1.5 IQR’s below the median. Many outliers above
the median (but fewer below the median) are a good indicator of right skew.

Compared to histograms, boxplots show less detailed information, but tend to be more concise and take
up less space. With a boxplot, you also don’t have to worry about picking good bins, like you do with a
histogram.

4. Re-do problem 2 with a boxplot instead of a histogram.

7

flights %>%
ggplot(aes(y=dep_delay)) +
geom_boxplot()

Warning: Removed 8255 rows containing non-finite values (`stat_boxplot()`).

0

500

1000

−0.4 −0.2 0.0 0.2 0.4

de
p_

de
la

y

Bar plots
A bar plot is the best way to visualize the distribution of a single categorical variable.

Diamonds have colors. In this dataset they range from D (best) to J (worst), and are coded as factor variables
(see Lab 2):
levels(diamonds$color)

[1] "D" "E" "F" "G" "H" "I" "J"

Let’s look at the color frequency distribution of the diamonds in the tibble. Since we want counts, we can use
geom_bar() directly:
diamonds %>%

ggplot(aes(x=color)) +
geom_bar()

8

0

3000

6000

9000

D E F G H I J
color

co
un

t

There are a good number of diamonds of all colors; a pluarlity are of color G.

As a sanity check, let’s use summarise() to view the raw numbers of diamonds of each color:
diamonds %>%

group_by(color) %>%
summarise(freq=n())

A tibble: 7 x 2
color freq
<ord> <int>
1 D 6775
2 E 9797
3 F 9542
4 G 11292
5 H 8304
6 I 5422
7 J 2808

They seem to match our bar plot!

5. Reproduce the bar plot above using geom_col().

Answer: To use geom_col() we need to use a tibble containing the counts of diamonds of each color. That’s
done for us in the chunk above, so we just assign it to a new variable diamond_summary that we pipe into a
call to ggplot() with geom_col():
diamond_summary <- diamonds %>%

group_by(color) %>%
summarise(freq=n())

9

diamond_summary %>%
ggplot(aes(x=color, y=freq)) +
geom_col()

0

3000

6000

9000

D E F G H I J
color

fr
eq

We might want to have more frequent y axis markings on our plot. We can achieve this using
scale_y_continuous():
diamonds %>%

ggplot(aes(x=color)) +
geom_bar() +
scale_y_continuous(n.breaks=11)

10

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D E F G H I J
color

co
un

t

We choose 11 breaks so that the axis labels are every 1,000. Note the function has a preference to make the
labels at nice, “round” numbers, so you don’t have to be super exact with your n_breaks:
diamonds %>%

ggplot(aes(x=color)) +
geom_bar() +
scale_y_continuous(n.breaks=13)

11

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D E F G H I J
color

co
un

t

If you want even more control over the axis labels, you can specify the breaks exactly using the breaks
argument inside scale_y_continuous().

aesthetics
What if we wanted a different fill for each bar? Recall we use aes() to specify aesthetic attributes that
should vary based on the data.
diamonds %>%

ggplot(aes(x=color)) +
geom_bar(aes(fill=color)) +
scale_y_continuous(n.breaks=13)

12

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D E F G H I J
color

co
un

t

color

D

E

F

G

H

I

J

Very nice! As seen in lecture, the fill color could be based on a different variable than the one on the x axis.
For instance, we can have a different fill color for diamonds based on the clarity:
diamonds %>%

ggplot(aes(x=color)) +
geom_bar(aes(fill=clarity)) +
scale_y_continuous(n.breaks=13)

13

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D E F G H I J
color

co
un

t

clarity

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

Fill and color are not the only aesthetic attributes you can set. Refer to the help menu for each geom to see
what other aesthetic attributes you could change. For example, you can change the transparency of each bar
in a bar plot using the alpha aesthetic:
diamonds %>%

ggplot(aes(x=color)) +
geom_bar(aes(alpha=clarity)) +
scale_y_continuous(n.breaks=13)

14

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

D E F G H I J
color

co
un

t

clarity

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

6. Visualize the distribution of diamond cuts, broken down by diamond color.

Answer:
diamonds %>%

ggplot(aes(x=cut)) +
geom_bar(aes(fill=color))

15

0

5000

10000

15000

20000

Fair Good Very Good Premium Ideal
cut

co
un

t

color

D

E

F

G

H

I

J

Color palettes
Colors are very important in visualizations, so it’s worth spending a little time understanding how to customize
them.

A color palette is an ordering of colors that R will use. If you don’t specify the color palette, R will use a
default sequence of colors that may not be what you want.

There are many, many different color palettes out there. We will only explore a few, to get the idea.

Two common sets of palettes that work well with ggplot2 are viridis (requires viridis package) and
RColorBrewer.

Viridis
Viridis palettes are specially designed to be both printer-friendly and color blindness-friendly.

You can use scale_colour_viridis() or scale_fill_viridis() with a call to ggplot() to impose a
viridis palette. A colour is for points, lines, and shape outlines. A fill is for the interior of a shape.

Note there are 8 different viridis palettes you can use, chosen by the “option” argument (see help menu). You
also need to specify discrete=TRUE if your colour/fill is for a categorical variable. If you don’t specify that,
then the function will default to discrete=FALSE, and you will get a continuous color scale.
library(viridis)

Loading required package: viridisLite
diamonds %>%

ggplot(aes(x=color)) +

16

geom_bar(aes(fill=clarity)) +
scale_fill_viridis(discrete=TRUE, option="A")

0

3000

6000

9000

D E F G H I J
color

co
un

t

clarity

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

Viridis color reference:

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

R Color Brewer
RColorBrewer is an older package with a lot more built-in palettes. These palettes for categorical variables,
though can be made to work with quantitative data as well. You can use these palettes in the same way as
with the viridis palettes, with scale_colour_brewer() or scale_fill_brewer().

RColorBrewer has a few dozen palettes divided into 3 types: diverging, qualitative, and sequential. Choose
the type that makes the most sense for your application.

A diverging palette has two contrasting colors at the ends, and gently grades to them in the middle. Example
use case: The RdBu palette to show Democrats vs. Republicans.

Qualitative palette: A sequence of different colors that aren’t related to each other. Example use case: Any
non-ordered categorical variable.

Sequential palette: A sequence of different shades of the same/similar color, designed to vary in intensity.
Example use case: An ordered categorical variable.
diamonds %>%

ggplot(aes(x=color)) +
geom_bar(aes(fill=clarity)) +
scale_fill_brewer(type="seq", palette=2)

17

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

0

3000

6000

9000

D E F G H I J
color

co
un

t

clarity

I1

SI2

SI1

VS2

VS1

VVS2

VVS1

IF

7. What type of palette did I use in this last plot? Why do you think I did so?

Answer: A sequential palette was used. This makes sense because clarity is an ordered categorical variable,
going from the least clear IF to the clearest I1 (you can get this information from the help page for diamonds).

Useful RColorBrewer cheatsheet: https://www.nceas.ucsb.edu/sites/default/files/2020-04/colorPaletteCheat
sheet.pdf (last page)

18

https://www.nceas.ucsb.edu/sites/default/files/2020-04/colorPaletteCheatsheet.pdf
https://www.nceas.ucsb.edu/sites/default/files/2020-04/colorPaletteCheatsheet.pdf

	Histograms
	Boxplots
	Bar plots
	aesthetics
	Color palettes
	Viridis
	R Color Brewer

