
Lecture 8: Multiple linear regression and beyond
Stats 32: Introduction to R for Undergraduates

Harrison Li

April 25, 2024

Agenda

1 Multiple linear regression

2 Categorical predictors

3 Polynomial regression

4 Locally weighted regression

Reading:

Multiple linear regression

Multiple linear regression

Last lecture, we introduced simple linear regression to explore the
relationship between an outcome variable y and a single predictor x.

Multiple linear regression extends this idea to relate an outcome
variable to more than one predictor variable.

For instance, we may want to model how someone’s blood pressure
depends on multiple physical factors: height, weight, age, race, etc.

Multiple linear regression

Let p be the total number of predictor variables, which we label
x1,. . . ,xp. Then the multiple linear regression model takes the form

y = β0 + β1x1 + ...+ βpxp + e

where again e is random noise centered around 0.
We now have p + 1 different coefficients, or parameters, in the
model: β0, β1,. . . ,βp.

OLS (again)

Just like in simple linear regression, the coefficients in multiple linear
regression are typically computed using ordinary least squares,
i.e. they are chosen to minimize

n∑
i=1

(yi − β0 − β1xi ,1 − ...− βpxi ,p)2

where the i-th observation consists of p + 1 data points: the p
predictor values xi ,1,. . . ,xi ,p and the outcome yi .

Multiple linear regression

Just like with simple linear regression, we can use the built-in lm()
function to fit a multiple linear regression.

Let’s try to understand the relationship between Length and the
predictors Shucked.wt, Viscera.wt, and Shell.wt in the
abalone data (let’s call these x1, x2, and x3, respectively). Note
the + signs separating the different predictors on the right hand side
of the formula.
library(tidyverse)
library(moderndive)
abalone <- read_csv("abalone.csv")
model <- lm(formula=Length ~ Shucked.wt + Viscera.wt + Shell.wt, data=abalone)
model %>%

get_regression_table()

A tibble: 4 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 0.331 0.005 69.3 0 0.322 0.34
2 Shucked.wt 0.144 0.03 4.75 0 0.084 0.204
3 Viscera.wt 0.231 0.079 2.95 0.003 0.077 0.386
4 Shell.wt 0.42 0.047 8.97 0 0.328 0.512

Prediction

From the regression table on the previous slide, we see β0 = 0.331,
β1 = 0.144, β2 = 0.231, β3 = 0.420.

Just like with simple linear regression, we can use predict() to
compute a prediction based on the regression equation
y = β0 + β1x1 + ...+ βpxp. The newdata argument should be a
tibble with p appropriately named columns.

For instance, let’s say we find two new abalones with the following
weight measurements, and want to predict their lengths:
abalone_new <- tibble(Shucked.wt=c(0.5, 0.3),

Viscera.wt=c(0.2, 0.2),
Shell.wt=c(0.4, 0.35))

abalone_new

A tibble: 2 x 3
Shucked.wt Viscera.wt Shell.wt
<dbl> <dbl> <dbl>
1 0.5 0.2 0.4
2 0.3 0.2 0.35

Prediction

predict(object=model, newdata=abalone_new)

1 2
0.6172920 0.5674962

We can manually verify the prediction for the first abalone:

0.331+0.144*0.5+0.231*0.2+0.420*0.4

[1] 0.6172

Coefficient interpretation

From the regression equation y = β0 + β1 ∗ x1 + ...+ βp ∗ xp, we see
that β0 is the prediction for y when all predictors x1,. . . ,xp are 0.

You want to be careful interpreting the other coefficients. The
proper interpretation is that β1 is the predicted change in y
corresponding to a one-unit increase in x1, keeping the other
predictors fixed.

It is important to include the “keeping the other predictors fixed”
part, because the predictors themselves might be positively
correlated! That is, an increase in x1 might tend to correspond to
an increase (or decrease) in x2, and/or the other predictors.

Categorical predictors

Categorical predictors

Last lecture, we saw that binary predictors can be used in simple
linear regression, using a 0/1 encoding. They can also be included
as such in a multiple linear regression.

Now, we will examine how general categorical predictors – which
can take on an arbitrary (but finite) number of different values –
can be used in (multiple or simple) linear regression.

Dummy variables

Suppose a categorical predictor x takes on K possible values, where
K is some positive integer (at least 2).

The standard way to represent x for regression is to generate K − 1
different 0/1 dummy variables, which we label x (1),. . . ,x (K−1).

We designate one possible value for x as the control level. If x is
equal to the control level, then we encode x (1) = ... = x (K−1) = 0.
Otherwise, x is equal to one of the other K − 1 possible values,
which is encoded by x (j) = 1 (for some j in 1,. . . ,K − 1) and the
other dummy variables equal to 0.

The regression equation for a simple linear regression of y onto x
becomes y = β0 + β1,1 · x (1) + ...+ β1,K−1 · x (K−1), which is fit like
a multiple linear regression of y onto x (1),. . . ,x (K−1).

Dummy variables

A simple non-binary categorical predictor is the origin airport from
the flights data (one of EWR, JFK, or LGA, so K = 3). If we fit
a simple linear regression for arr_delay versus origin, R will
automatically generate the 2 dummy variables for origin:
library(nycflights13)
lm(arr_delay ~ origin, data=flights) %>%

get_regression_table()

A tibble: 3 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 9.11 0.13 69.9 0 8.85 9.36
2 origin: JFK -3.56 0.188 -18.9 0 -3.92 -3.19
3 origin: LGA -3.32 0.191 -17.4 0 -3.70 -2.95

Dummy variables

By default, R chooses the first level alphabetically (EWR) to be the
control level. We see that R has generated two dummy variables:
origin: JFK and origin: LGA.

origin: JFK is the dummy variable that is 1 when origin = JFK
(and 0 otherwise). Likewise, origin: LGA is 1 when origin =
LGA (and 0 otherwise). When origin = EWR, both dummy
variables are 0.

The control level can be changed using fct_relevel(). The first
level will be the control.

Prediction

What is the predicted arr_delay for a flight leaving from EWR?
How about JFK?

From the regression equation y = 9.107− 3.556 ∗ x (1) − 3.324 ∗ x (2),
(here x (1) corresponds to origin: JFK and x (2) corresponds to
origin: LGA), we see that the prediction for EWR must be the
intercept, 9.107 (as EWR corresponds to x (1) = x (2) = 0).

Meanwhile, for JFK the prediction is 9.107 − 3.556 = 5.551.

Prediction

Of course, we can also use the predict() function to avoid this
manual computation:
model <- lm(arr_delay ~ origin, data=flights)
predict(model, newdata=tibble(origin="EWR"))

1
9.107055

predict(model, newdata=tibble(origin="JFK"))

1
5.551481

Interpretation

We can interpret the intercept as the predicted value for y when x
equals its control level.

Meanwhile, β1,j is the predicted value for y when x equals level j ,
minus the predicted value for y when x equals its control level. Can
you see why?

Categorical predictors in multiple linear regression

Finally, we note that categorical predictors can be included in a
multiple linear regression, alongside one or more other predictors
(quantitative and/or categorical)!

For instance, if x1 is quantitative but x2 is categorical with 4 levels,
we have the regression equation

y = β0 + β1 · x1 + β2,1 · x (1)
2 + β2,2 · x (2)

2 + β2,3 · x (3)
2

where x (1)
2 , x (2)

2 , and x (3)
2 are the dummy variables corresponding to

x2.

Polynomial regression

Polynomial regression

Let’s look at a scatterplot of the horsepower hp versus the wt
(weight) of various cars in the built-in mtcars dataset, along with
the line from simple linear regression (recall from Lab 7 that
geom_smooth() in ggplot2 condenses the model fitting,
prediction, and plotting steps into one):
mtcars %>%

ggplot(aes(x=wt, y=hp)) +
geom_point() +
geom_smooth(method="lm", color="blue", se=FALSE)

`geom_smooth()` using formula = 'y ~ x'

100

200

300

2 3 4 5
wt

hp

Quadratic regression

We observe a line may not fit the points above that well, since the
increasing trend seems to “flatten” out for higher values of wt.

One solution is quadratic regression, which models y as a quadratic
function of x (plus noise):

y = β0 + β1 · x + β2 · x2 + e

We can fit this via a multiple regression of y onto the two predictors
x and x2!

Quadratic regression in R

The formula to fit a quadratic regression in R will look like y ~ x +
I(xˆ2). Do NOT try y ~ x + xˆ2, which has unexpected
behavior. That is, the I() wrapper around xˆ2 is critical.

lm(formula=hp ~ wt+I(wtˆ2), data=mtcars) %>%
get_regression_table()

A tibble: 3 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept -76.7 83.4 -0.92 0.365 -247. 93.8
2 wt 93.8 49.8 1.88 0.07 -8.04 196.
3 I(wt^2) -6.94 7.12 -0.975 0.338 -21.5 7.62

The regression equation is y = −76.734 + 93.765 · x − 6.938 · x2.

Polynomial regression

Of course, we can extend the idea of quadratic regression to
polynomials of higher order, e.g. y = β0 + β1,1 · x + ...+ β1,p · xp

for a polynomial of degree p, again by fitting a multiple regression
with the p predictors x , x2,. . . , xp.

Here’s what a 4-th degree regression fit looks like (red):

100

200

300

2 3 4 5
wt

hp

Locally weighted regression

Locally weighted regression

Sometimes, you may have a complicated-looking relationship
between y and x that you want to fit. There may be no obvious
polynomial relationship.

Luckily, there are still regression-based tools to deal with that! One
popular method to fit a generic curve to your data is locally
weighted regression, implemented using the built-in function
loess().

The interface for loess() is very similar to that of lm(). The big
difference is that loess() does not give you a regression equation,
as it does not assume a simple mathematical form for the
relationship between y and the predictors. This allows it to do much
more flexible “curve fitting”. However, you can still use predict()!

span

An important argument to loess() is the span, which controls the
degree of “smoothing”, i.e. how “smooth” the fitted curve will look.
span ranges from 0 to 1; higher values indicate a smoother curve.

Let’s look at loess() fits with span 0.2 (black), 0.5 (red), and 0.8
(green) for hp versus wt, as above:

100

200

300

2 3 4 5
wt

hp

span

There’s no single correct way to choose span. Choosing span too
low will make the curve fit the data too closely, which could cause
your curve to start fitting the “noise” in the data rather than the
actual trend.

On the other hand, choosing span too high could cause the curve to
miss important patterns in the data.

Next week, we will explore the concept of cross validation to provide
a data-driven way to choose model parameters like span.

	Multiple linear regression
	Categorical predictors
	Polynomial regression
	Locally weighted regression

