
Lab 10 Solutions
Stats 32: Introduction to R for Undergraduates

Harrison Li

5/2/2024

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

set.seed(2024) # For reproducibility

Evaluating predictive performance
We fit various regression models, and evaluate their mean squared error.
nrow(mpg)

[1] 234

1. Split the mpg dataset randomly into a training set of 154 observations and a test set of 80 observations.
That is, randomly select 154 of the observations to be in the training dataset (storing it in a variable
called train), and assign the remaining 80 observations to a variable called test. Hint: generate
the training indices randomly from 1:nrow(mpg) using sample() and store them in a variable called
train_ind. Then index appropriately into the mpg data frame (it may help to recall negative indexing).

Answer:
train_ind <- sample(1:nrow(mpg), size=154, replace=FALSE)
train <- mpg[train_ind,]
test <- mpg[-train_ind,]

2. Fit the linear model hwy ~ cty using the training data.

Answer:
model <- lm(formula=hwy ~ cty, data=train)

Recall the definition of mean squared error. If y_hat is a vector of n predictions from a model, while y is a
vector of the n corresponding true values the model is trying to predict, then the mean squared error is the
average of the entries of (y-y_hat)ˆ2. Here’s some code to illustrate this (we use runif() from Lab 9 to

1

generate random uniform data for y_hat and y in this example, but in real life y would be in your data and
y_hat would be an output from your model):
y_hat <- runif(n=50)
y <- runif(n=50)
mse <- mean((y-y_hat)ˆ2)
mse

[1] 0.2688858

3. Use the predict() function to get a vector of predictions on the test set, using the linear model fit on
the training data in the previous question. Compute the mean squared error on the test set. Is this a
measure of in-sample or out-of-sample error?

Answer:
y_pred <- predict(object=model, newdata=test)
test_mse <- mean((test$hwy - y_pred)ˆ2)
test_mse

[1] 3.550843

Since we are computing the mean squared error on a dataset that was not used for fitting the model, we are
measuring out-of-sample error.

Now we use geom_smooth() to look at the predictions of two loess models — fit to the training dataset —
designed to predict hwy from cty. One has span = 0.2, the other with span = 0.8.
mpg %>%
ggplot(aes(x=cty, y=hwy)) +
geom_jitter() +
geom_smooth(method="loess", formula=y ~ x, span=0.2, aes(color="0.2"), lwd=0.5, se=FALSE) +
geom_smooth(method="loess", formula=y ~ x, span=0.8, aes(color="0.8"), lwd=0.5, se=FALSE) +
scale_color_manual(name="span",

breaks=c("0.2", "0.8"),
values=c("0.2"="red", "0.8"="blue"))

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: pseudoinverse used at 16

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: neighborhood radius 1

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: reciprocal condition number 0

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: There are other near singularities as well. 1

2

20

30

40

10 20 30
cty

hw
y

span

0.2

0.8

4. Which of the loess models has lower mean squared error on the training set? How about on the test
set? Which model would you prefer for prediction? Do the loess models perform better than the linear
model from question 3? Hint: you need to first re-fit the models manually (since geom_smooth() does
not store the model objects it creates under the hood). Note: You may need to ignore NA predictions
for evaluating the test MSE.

Answer:
Fit models
loess_wiggly <- loess(formula=hwy ~ cty, data=train, span=0.2)

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: pseudoinverse used at 16

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: neighborhood radius 1

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: reciprocal condition number 0

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
: There are other near singularities as well. 1

loess_smooth <- loess(formula=hwy ~ cty, data=train, span=0.8)

Evaluate train and test mse
loess_wiggly_train_mse <- mean((predict(loess_wiggly, newdata=train)-train$hwy)ˆ2)
loess_smooth_train_mse <- mean((predict(loess_smooth, newdata=train)-train$hwy)ˆ2)
loess_wiggly_test_mse <- mean((predict(loess_wiggly, newdata=test)-test$hwy)ˆ2, na.rm=TRUE)
loess_smooth_test_mse <- mean((predict(loess_smooth, newdata=test)-test$hwy)ˆ2, na.rm=TRUE)

3

Print train mse's
loess_wiggly_train_mse

[1] 2.202707

loess_smooth_train_mse

[1] 2.539745

Print test mse's
loess_wiggly_test_mse

[1] 3.122013

loess_smooth_test_mse

[1] 2.716025

The wiggly loess model with span=0.2 has lower MSE than the model with span=0.8 on the training set but
noticeably higher MSE on the test set. This suggests the model with span=0.2 may be overfitting, and we
prefer the model with span=0.8 based on the test error estimate.

The test MSE of both loess models is also noticeably lower than that of the linear model (see question 3),
suggesting we are indeed getting better performance than linear regression.

4

	Evaluating predictive performance

