
Lab 6 Solutions
Stats 32: Introduction to R for Undergraduates

Harrison Li

04/18/2024

Note: The content of this lab is partially borrowed from Kenneth Tay’s course materials in the Autumn 2019
iteration of this course.

Let’s return to the diamonds tibble from last class.
library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

2-D visualizations
Since price is an important variable to consider when buying a diamond, we want to understand which
characteristics of a diamond affect it and how.

A first guess would be that the weight of a diamond, indicated by carat, would heavily influence price. Carat
and price are both quantitative, so let’s make a scatterplot of price vs. carat, using geom_point():
diamonds %>%

ggplot(mapping = aes(x = carat, y = price)) +
geom_point()

1

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

Wow, what a mess! That’s because we have so many data points being plotted over each other (this is called
overplotting). Are there more diamonds in the 0-1 carat range or the 2-3 carat range? It’s hard to tell.
One way to address this is to modify the transparency of each point by adjusting “alpha”. By default, alpha
= 1, which represents being fully opaque. We can reduce alpha (alpha = 0.05 means that 20 points are
needed to get full opacity):
diamonds %>%

ggplot() +
geom_point(mapping = aes(x = carat, y = price), alpha = 0.05)

2

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

There’s still a fair bit of overplotting going on, but some characteristics of the data become more obvious.
For example, the carat size of diamonds seem to bunch up around certain values (e.g. just above 1, 1.5, 2).
This may be worth investigating.

Instead of filled circles, we could change the shape of the points manually through the shape argument (see
this reference for which symbols correspond to each shape value):
diamonds %>%

ggplot() +
geom_point(mapping = aes(x = carat, y = price), alpha = 0.05, shape = 4)

3

http://r4ds.had.co.nz/data-visualisation.html#fig:shapes

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

It’s debatable that changing the shape helped make the plot clearer.

Regardless, it’s clear that the heavier the diamond, the more expensive it is. At the same time, we see quite
a wide spread of prices for diamonds of the same weight, indicating that there are probably other factors at
play.

Looking at the dataset, we might guess that cut might be an important factor determining the price of a
diamond as well. Let’s try a scatterplot:
diamonds %>%

ggplot(diamonds, mapping = aes(x = cut, y = price)) +
geom_point()

4

0

5000

10000

15000

Fair Good Very Good Premium Ideal
cut

pr
ic

e

That’s not informative at all! We again see a lot of overplotting going on (due to the sheer number of points).
Let’s use the alpha trick that we used previously:
diamonds %>%

ggplot(mapping = aes(x = cut, y = price)) +
geom_point(alpha = 0.05)

5

0

5000

10000

15000

Fair Good Very Good Premium Ideal
cut

pr
ic

e

Still not great. As discussed in class, since cut is categorical, a better thing to do is multiple (side-by-side)
boxplots:
diamonds %>%

ggplot(aes(x = cut, y = price)) +
geom_boxplot()

6

0

5000

10000

15000

Fair Good Very Good Premium Ideal
cut

pr
ic

e

Interesting! The bulk of the distribution of prices is roughly the same, no matter what the cut is. In fact,
from the boxplots, it seems the ideal cut diamonds tend to have the lowest prices!

1. Make an appropriate visualization to show the distribution of prices broken down by the color of each
diamond.

Answer: Since price is quantitative but color is categorical, we choose to use side-by-side boxplots:
diamonds %>%

ggplot(aes(x=color, y=price)) +
geom_boxplot()

7

0

5000

10000

15000

D E F G H I J
color

pr
ic

e

An alternative to side-by-side boxplots is the violin plot:
diamonds %>%

ggplot(mapping = aes(x = cut, y = price)) +
geom_violin()

8

0

5000

10000

15000

Fair Good Very Good Premium Ideal
cut

pr
ic

e

Read violin plots as sideways histograms.

3 or more variables
It seems unintuitive that diamonds of ideal cut have lower prices. Could other variables in the data explain
this? One possibility is that there just aren’t many large diamonds of ideal cut: thus, a diamond of ideal cut
tends to weigh less (smaller in carat size), and hence fetches a lower price.

For this, we can use side-by-side boxplots to look at how the distribution of size in carats varies by cut:
diamonds %>%

ggplot(aes(x=cut, y=carat)) +
geom_boxplot()

9

0

1

2

3

4

5

Fair Good Very Good Premium Ideal
cut

ca
ra

t

It does seem that the better cut diamonds tend to be a bit lighter (have smaller carat weights).

So now we instead try to understand how cut influences price, keeping carat weight fixed. We can do this by
modifying our original scatterplot of price versus carat weight, but having the color of the dots indicate cut.
diamonds %>%

ggplot(mapping = aes(x = carat, y = price, col = cut)) +
geom_point(alpha = 0.2)

10

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

cut

Fair

Good

Very Good

Premium

Ideal

There seem to be clearly more yellow dots on the top side of the plot and more purple dots on the bottom plot,
suggesting that within diamonds of a given size, those with a better cut indeed tend to be more expensive.

In this case, changing the color of the dots helped us to understand the data better. We could’ve also changed
the transparency or shape, but these end up being less readable. Often it will take some trial and error (and
some subjective human judgment) to get the best looking plot!
diamonds %>%

ggplot(mapping = aes(x = carat, y = price, size = cut)) +
geom_point(alpha = 0.2)

11

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

cut

Fair

Good

Very Good

Premium

Ideal

diamonds %>%
ggplot(mapping = aes(x = carat, y = price, shape = cut)) +
geom_point(alpha = 0.2)

Warning: Using shapes for an ordinal variable is not advised

12

0

5000

10000

15000

0 1 2 3 4 5
carat

pr
ic

e

cut

Fair

Good

Very Good

Premium

Ideal

Faceting
There’s still a fair amount of overplotting going on in our scatterplot with coloring by cut. Can we have
separate graphs of price vs. carat for each cut?

Yes! This is called splitting the plot into facets. R allows us to do this by using the function facet_wrap().
Use the following code to facet the plot by a single variable:
diamonds %>%

ggplot(mapping = aes(x = carat, y = price)) +
geom_point(aes(color = cut), alpha = 0.2) +
scale_colour_brewer(palette = "YlOrRd") +
facet_wrap(~ cut)

13

Premium Ideal

Fair Good Very Good

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5
0

5000

10000

15000

0

5000

10000

15000

carat

pr
ic

e

cut

Fair

Good

Very Good

Premium

Ideal

By default, R put just 3 subplots in each row. We can change this by adding a nrow argument to facet_wrap():
diamonds %>%

ggplot(mapping=aes(x=carat, y=price)) +
geom_point(aes(color=cut), alpha = 0.2) +
scale_colour_brewer(palette = "YlOrRd") +
facet_wrap(~ cut, nrow = 1)

Fair Good Very Good Premium Ideal

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0

5000

10000

15000

carat

pr
ic

e

cut

Fair

Good

Very Good

Premium

Ideal

Faceting didn’t help too much in this case, since the plots for the better cuts look very similar to one another.

As you can probably see by now, the possibilities are endless!

If we want to facet by more than 1 variable, we can do so with facet_grid(). The variable before the ~ sign
will be split among the rows, while the variable after the ~ sign will be split among the columns:
ggplot(data = diamonds, mapping = aes(x = carat, y = price)) +

geom_point(alpha = 0.2) +
facet_grid(cut ~ color)

14

D E F G H I J
Fair

G
ood

V
ery G

ood
P

rem
ium

Ideal

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

carat

pr
ic

e

2. Create faceted scatterplots of price vs. carat, such that in each plot the points are colored by color
and in each facet you have a different cut. Congratulations: You’ve just visualized 4 variables at a
time - 2 categorical, 2 quantitative.

Answer:
diamonds %>%

ggplot(aes(x=carat, y=price)) +
geom_point(aes(color=color)) +
facet_wrap(~cut)

15

Premium Ideal

Fair Good Very Good

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5
0

5000

10000

15000

0

5000

10000

15000

carat

pr
ic

e

color

D

E

F

G

H

I

J

Layers and themes
Let’s say you’re satisfied with the scatterplot of price vs. carat with color denoting cut, and that you want to
share it with others. The first thing you should do is label your axes and give your plot a title by adding
layers:
diamonds %>%

ggplot(mapping = aes(x = carat, y = price, col = cut)) +
geom_point(alpha = 0.2) +
scale_colour_brewer(palette = "YlOrRd") +
labs(x = "Carat", y = "Price", title = "Plot of carat vs. price")

16

0

5000

10000

15000

0 1 2 3 4 5
Carat

P
ric

e

cut

Fair

Good

Very Good

Premium

Ideal

Plot of carat vs. price

The size of the labels seems a bit small. We can adjust them using the theme() function. Let’s centralize the
plot title at the same time:
diamonds %>%

ggplot(mapping = aes(x = carat, y = price, col = cut)) +
geom_point(alpha = 0.2) +
scale_colour_brewer(palette = "YlOrRd") +
labs(x = "Carat", y = "Price", title = "Plot of carat vs. price") +
theme(plot.title = element_text(size = rel(1.5), face = "bold", hjust = 0.5),

axis.title = element_text(size = rel(1.2)))

17

0

5000

10000

15000

0 1 2 3 4 5

Carat

P
ric

e

cut

Fair

Good

Very Good

Premium

Ideal

Plot of carat vs. price

We can move the legend around by setting a legend.position argument in theme() (possible options are
“none”, “left”, “right”, “bottom”, “top”):
ggplot(data = diamonds, mapping = aes(x = carat, y = price, col = cut)) +

geom_point(alpha = 0.2) +
scale_colour_brewer(palette = "YlOrRd") +
labs(x = "Carat", y = "Price", title = " Plot of carat vs. price") +
theme(plot.title = element_text(size = rel(2), face = "bold", hjust = 0.5),

axis.title = element_text(size = rel(1.5)),
legend.position = "bottom")

18

0

5000

10000

15000

0 1 2 3 4 5

Carat

P
ric

e

cut Fair Good Very Good Premium Ideal

 Plot of carat vs. price

For a full (long!) list of attributes which can be modified, see this reference. Don’t try to memorize these.
Just refer to them (or Stack Overflow) when you want to do something.

3. Add a title and better axis labels to your plot from question 1. Change the vertical axis so that the
tick labels are at 0, 2000, 4000,. . . .,20000 instead of at 0, 5000,. . . Hint: look at the help page for
scale_y_continuous()‘.

Answer:
diamonds %>%

ggplot(aes(x=color, y=price)) +
geom_boxplot() +
ggtitle("Price vs. cut of diamonds") +
xlab("Cut") +
ylab("Price") +
scale_y_continuous(breaks=seq(0, 20000, by=2000))

19

http://ggplot2.tidyverse.org/reference/theme.html

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

D E F G H I J
Cut

P
ric

e
Price vs. cut of diamonds

To save a plot, run the code generating that plot in the console (just clicking the run chunk button won’t
work), and then click on the Export button in the bottom right portion of the RStudio IDE, and click “Save
as Image. . . ” (or “Save as PDF. . . ”) You can adjust the size of your image in the pop-up before saving it.

4. Save your plot for problem 3 in a directory where you won’t lose it (no need to show any code for this
part).

20

	2-D visualizations
	3 or more variables
	Faceting
	Layers and themes

