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Summary statistics



Summary statistics

Given a numeric vector, R provides several built in mathematical
functions to summarize the data, i.e. return a single number that
captures some aspect of the data vector:

length(): computes the number of entries
sum(): computes the sum of all the entries
mean(): computes the average entry value, equivalent to sum
divided by length
median(): computes the median entry
min(): computes the minimum entry
max(): computes the maximum entry
sd(): computes the (sample) standard deviation of the entries



Summary statistics

my_vector <- c(0, 3, 3, -2)
max(my_vector)

## [1] 3
length(my_vector)

## [1] 4
sum(my_vector)

## [1] 4
mean(my_vector)

## [1] 1
sum(my_vector)/length(my_vector)

## [1] 1
sd(my_vector)

## [1] 2.44949



summarise()



summarise()

The dplyr verb summarise() takes in a tibble and returns a new
tibble that shows the result of applying the summary statistic(s) of
your choice to any column(s) in your tibble.

Its syntax is similar to that of mutate(). The difference is that
summarise() (without a grouping variable, which we will see later)
returns a tibble with just 1 row. Each column in this tibble is a
single numerical summary of a column in the original tibble.



summarise()

Let’s read in the abalone data again, and get the length of the
longest abalone, as well as the mean and standard deviation of
Rings.

library(tidyverse)
abalone <- read_csv("abalone.csv")
summary_tibble <- abalone %>%

summarise(Longest_Abalone=max(Length),
Mean_Rings=mean(Rings),
Rings_SD=sd(Rings))

summary_tibble

## # A tibble: 1 x 3
## Longest_Abalone Mean_Rings Rings_SD
## <dbl> <dbl> <dbl>
## 1 0.815 9.97 3.21



group_by()



group_by()

Often, you do not want to summarize all the rows in a tibble; you
want a breakdown based on another grouping variable.

For instance, suppose you have a dataset with the heights of
randomly sampled adults around the world. You might be interested
in knowing the average height of the adults you sampled, broken
down by country.

In this case, you want to group your data by country, the grouping
variable. The dplyr verb group_by() does just that. It doesn’t
cause any externally visible changes to your tibble. However, the
internal structure is changed, as will be seen if you follow up with
summarise(). Your summary will now have one row for each value
of the grouping variable!



group_by()

Suppose long abalones are defined as those with Length > 0.5, and
short abalones are those with Length <= 0.5.

How can we find the number of long and short abalones in our data,
as well as the average heights in each length category?

From the help page, we see that group_by() takes in .data as its
first argument (like any other dplyr verb). Then, it requires us to
specify the variables to group by (i.e. the grouping variables).



group_by()

The abalone tibble doesn’t explicitly tell us whether an abalone is
long or short, so we can’t immediately use group_by().

However, this information can be deduced from the Length column.
Thus, we proceed by using mutate() to create a new column in the
tibble called Height_Type, which specifies whether the abalone is
in fact long or short. We store this in a new variable
abalone_enhanced. Note the use of the ifelse() function,
which can be useful:

abalone_enhanced <- abalone %>%
mutate(Height_Type=ifelse(Length > 0.5, "long", "short"))



group_by() with summarise(): a power duo

We can now call group_by() and summarise() on
abalone_enhanced, using Height_Type as the grouping variable.

abalone_enhanced %>%
group_by(Height_Type) %>%
summarise(Average_Height=mean(Height),

Quantity=n())

## # A tibble: 2 x 3
## Height_Type Average_Height Quantity
## <chr> <dbl> <int>
## 1 long 0.164 187
## 2 short 0.0992 113

Note: n() is a special function with no arguments that can be used
in summarise() to count the number of observations (in each
group, when the tibble is grouped).



Categorical and quantitative variables

Typically, we want the grouping variable to be categorical, that is, a
variable that takes on one of a few possible values, as opposed to a
quantitative variable that takes on numeric values on a continuous,
ordered spectrum.

Are the following variables categorical or quantitative?

Wind speed
Wind direction
Income
Eye color
Number of bedrooms for condos in a small apartment building



Categorical and quantitative variables

What happens if we try to group by a quantitative variable?

abalone %>%
group_by(Length) %>%
summarise(Average_Height=mean(Height))

## # A tibble: 97 x 2
## Length Average_Height
## <dbl> <dbl>
## 1 0.175 0.04
## 2 0.19 0.04
## 3 0.21 0.05
## 4 0.215 0.03
## 5 0.23 0.06
## 6 0.235 0.065
## 7 0.255 0.06
## 8 0.265 0.065
## 9 0.27 0.08
## 10 0.275 0.055
## # i 87 more rows



Joins



Joins

What if the information you want is spread across two different
tibbles? Joins are the solution, enabling you to “join” together two
tibbles into one.

In order to join two tibbles, they must have at least one column in
common, sometimes called a key variable.



Joins

Let’s load in the nycflights13 package, and take a look at the
included tibbles airports and flights:

library(nycflights13)
head(airports, 5)

## # A tibble: 5 x 8
## faa name lat lon alt tz dst tzone
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/New~
## 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A America/Chi~
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/Chi~
## 4 06N Randall Airport 41.4 -74.4 523 -5 A America/New~
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/New~

head(flights, 5)

## # A tibble: 5 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>



Joins

We notice that the flights tibble has information about a number
of flights departing from the three major NYC area airports in 2013.

However, the only information about the flight destination is the
FAA code in the column dest. We might want to have more
information, e.g. the full name of the destination airport.
head(flights$dest)

## [1] "IAH" "IAH" "MIA" "BQN" "ATL" "ORD"



Key variables

Luckily, the airports tibble contains information including both
their FAA codes and full names.

Since both flights and airports have FAA codes, the FAA
codes are a key variable that enables us to join these tibbles.

Note the FAA codes are stored in differently named columns:
flights$dest and airports$faa.



Left join

The result of a left join of flights onto airports will be an
“augmented tibble” with at least one row for each row in flights,
but more columns.

The augmented tibble has all columns in flights and all columns
in airports, with one exception: it has no column called faa,
since the join absorbs that into the matching dest column.

It would be redundant to have both faa and dest.



Left join

For each row in flights, in the left joined tibble we will have one
row for each row in airports that has the same FAA code. It is
probably easier to understand this fully with some worked examples -
see the lab.

Left joins are carried out with the dplyr function left_join().
The by() argument specifies the key variable(s).



Left join

flights %>%
left_join(y=airports, by=c("dest"="faa")) %>%
select(tailnum, origin, dest, name)

## # A tibble: 336,776 x 4
## tailnum origin dest name
## <chr> <chr> <chr> <chr>
## 1 N14228 EWR IAH George Bush Intercontinental
## 2 N24211 LGA IAH George Bush Intercontinental
## 3 N619AA JFK MIA Miami Intl
## 4 N804JB JFK BQN <NA>
## 5 N668DN LGA ATL Hartsfield Jackson Atlanta Intl
## 6 N39463 EWR ORD Chicago Ohare Intl
## 7 N516JB EWR FLL Fort Lauderdale Hollywood Intl
## 8 N829AS LGA IAD Washington Dulles Intl
## 9 N593JB JFK MCO Orlando Intl
## 10 N3ALAA LGA ORD Chicago Ohare Intl
## # i 336,766 more rows



Left join

Above, we used a left join of flights onto airports. This means
we are guaranteed to have at least one row in the resulting tibble for
each row in flights.

If there were multiple rows with the same FAA code in airports,
we could potentially have multiple rows for each row in flights.
Not the case for this example.

If, for some row in flights, the entry for dest is an FAA code not
in airports, we will return NA for all of the columns corresponding
to those in airports.

For example, consider row 4 in the result of the left join previous
slide. The airport BQN is not in airports, so there is an NA in the
dest column for that row.



Left, right, inner, full (outer) joins

While left joins can handle most use cases, it’s useful to be aware of
the other types of joins.

Right join: Return at least one row for each row in the second
tibble. In general, left joining tibble A onto tibble B is the
same as right joining tibble B onto tibble A.
Inner join: Only return rows where there is a match between
both tibbles. In other words, take the result of a left (or right)
join, and get rid of the rows with NA in any of the new columns.
Inner joining A onto B is the same as inner joining B onto A.
Full (outer) join: Return at least one row for each row in the
first tibble and at least one row for each row in the right tibble,
with NAs as necessary. Again, the order doesn’t matter.



Left, right, inner, full (outer) joins
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