
Lecture 1: Introduction: Variables, data types,
and data structures

Stats 32: Introduction to R for Undergraduates

Harrison Li

April 2, 2024

Agenda

1 Course Logistics

2 Introduction to R

3 Variables and data types

4 Data structures

5 Indexing

Reading: Sections 1.1, 1.2

Course Logistics

Course outline

4 major units:

Fundamentals (1 week)
Data structures, functions, packages

Data cleaning and wrangling (1 week)
Tidy data, dplyr verbs

Data visualization (1 week)
Basic univariate and multivariate visualizations using ggplot2

Data analysis (2 weeks)
Linear regression and extensions, A/B testing, model validation
and selection

See syllabus on Canvas for more detailed information

Meetings and textbook

This class will meet for the first five weeks of the quarter on
Tuesdays and Thursdays from 12 noon to 1:20 pm in Mitchell Earth
Sciences B67.

Laptops required for each class session — much of the learning in
this class will be through interactive labs.

This course is loosely based on the textbook Statistical Inference via
Data Science: A ModernDive into R and the Tidyverse by Chester
Ismay and Albert Y. Kim. It is freely available online at
https://moderndive.com.

https://moderndive.com

Assignments and grading

Completion of in-class labs in groups (20%, starting 4/4)
Weekly homework assignments (80%, 4 total)

Although this is a 1 unit course, since we only meet for half of the
quarter and for 3 hours/week (instead of 1 hour), expect the
workload for the course to be closer to that of a 2-3 unit course
during the first five weeks.

Introduction to R

What is R?

A free programming language specifically designed for
statistical computing.
The language of choice for statisticians; increasingly popular for
anyone who needs to wrangle with, visualize, and/or analyze
data!
A modern implementation of the earlier language S, developed
at Bell Labs in the 1970s.

R’s strengths

Packages. R has a comprehensive collection of statistical
packages; new statistical methods are often first implemented
in R.
Versatility. Use R to write code, develop online data
dashboards (R Shiny), generate professional technical reports
(R Markdown), and create presentation slides like this one
(Beamer).
Open source. R is free to use for everyone, and anyone can view
the underlying source code, or (conversely) contribute code.
Easier syntax. Relative to other languages, R’s syntax is less
nitpicky, making it easier to pick up.

R’s weaknesses

Slowness. Due to the high-level functionality R provides, it
tends to run significantly more slowly than lower-level languages
(C, Java, etc.). We will not focus on speed in this class.
Uneven documentation. By virtue of being open source, R’s
documentation is less polished than that of some other similar
languages (MATLAB, Maple, etc.). Internet forums are your
friend!

RStudio

RStudio is an Integrated Development Environment (IDE) providing
a user-friendly way to interact with R.

RStudio

The console (bottom left section of the RStudio window) allows
you to type commands directly into R, one line at a time.

The top left section of the RStudio window is a text editor, for
creating and saving longer files (say with .R or .Rmd extensions)

Finally, the top right section displays the environment, which
requires an understanding of variables or objects.

Variables and data types

Variables and data types

A variable (more formally an object) is a named container for data.
This data can be of various types:

Numeric: A number, e.g. -4, 100, or 0.1273
Logical: Either TRUE or FALSE
Character: Text, e.g. “I love Stats 32” (note the quotes)
Factor: A non-numeric variable taking on one of several
pre-specified values, known as the levels, e.g. eye color can be
“blue”, “brown”, or “green”

Assignment

A variable is assigned (given a value) using the <- operator, or
alternatively, the = sign (not recommended):
myVariable <- 3

To display the value of a variable, you can simply enter its name in
the console:
myVariable

[1] 3

Assignment

Once a variable is assigned, it becomes a part of the environment:
the space of all objects that have been defined.

Recall the environment section is the top right corner of RStudio. It
displays the value of all variables in the environment.

Variable reassignment

myVariable <- 3
myVariable

[1] 3

myVariable <- 4
myVariable

[1] 4

Basic arithmetic operations

R supports basic arithmetic operations for numeric variables:

Addition using +
Subtraction using -
Multiplication using *
Division using /
Exponentation using ˆ
Modular division using %%: given integers a and b, a %% b
returns the remainder when a is divided by b

Basic arithmetic operations

x <- 2
y <- -4
z <- 17

x-y

[1] 6

3+2*xˆ2

[1] 11

z %% x

[1] 1

Converting and verifying data types

x <- "32"
y <- as.numeric(x)
y

[1] 32
is.numeric(y)

[1] TRUE
as.character(y)

[1] "32"
is.character(as.character(y))

[1] TRUE

Data structures

Data structures

Data can be organized into a data structure for ease of
manipulation. Here are some basic data structures in R:

Vector: A 1-D collection of data of the same type, created
using c()
Matrix: A 2-D array of data of the same type, created using
matrix()
List: A 1-D collection of data of arbitrary types, created using
list()
Data frame: A 2-D array of data with named columns; each
column is a vector. Created using data.frame(). We will
learn more about data frames in Lecture 2. Useful fact: a data
frame is in fact a list under the hood, where each element of
the list is a column of the data frame (which is itself a vector)

Vectors

myNumericVector <- c(2, -1, 5)
myCharacterVector <- c("S", "t", "a", "t", "s")
myNumericVector

[1] 2 -1 5

myCharacterVector

[1] "S" "t" "a" "t" "s"

Vectorization

Note that arithmetic operations in R are “vectorized” for
convenience, meaning they will apply to each element of a vector in
the expected way:
myNumericVector + 1

[1] 3 0 6

myNumericVector + c(1, 1, 1)

[1] 3 0 6

myNumericVectorˆ2

[1] 4 1 25

myNumericVector * c(0, 3, 2)

[1] 0 -3 10

Matrices

myMatrix <- matrix(data=c(4,3,1,2), nrow=2,
ncol=2, byrow=TRUE)

myMatrix

[,1] [,2]
[1,] 4 3
[2,] 1 2

Lists

myList <- list(2, "cat", c(3, 1))
myList

[[1]]
[1] 2
##
[[2]]
[1] "cat"
##
[[3]]
[1] 3 1

Named lists

Note that each entry in a list can also be given a name:

myNamedList <- list(integer=2, characterVector="cat", numericVector=c(3,1))
myNamedList

$integer
[1] 2
##
$characterVector
[1] "cat"
##
$numericVector
[1] 3 1
names(myNamedList)

[1] "integer" "characterVector" "numericVector"

Indexing

Indexing

You can access individual entries or other chunks of a larger data
structure via indexing.

myNumericVector

[1] 2 -1 5
myNumericVector[2]

[1] -1
myMatrix

[,1] [,2]
[1,] 4 3
[2,] 1 2
myMatrix[2,1]

[1] 1
myMatrix[,1]

[1] 4 1

Indexing

myList

[[1]]
[1] 2
##
[[2]]
[1] "cat"
##
[[3]]
[1] 3 1
myList[2]

[[1]]
[1] "cat"
myList[c(1,3)]

[[1]]
[1] 2
##
[[2]]
[1] 3 1

Indexing

myList[2]

[[1]]
[1] "cat"

Note myList[2] returns a list with a single element that is the
character object “cat”. You need to use double square brackets to
“fully” index into a list, i.e. myList[[2]] returns the character
vector “cat”, rather than a list.

Indexing

For a named list, you can also index by name using the $ operator:
myNamedList$characterVector

[1] "cat"

This is equivalent to the following:
myNamedList[["characterVector"]]

[1] "cat"

	Course Logistics
	Introduction to R
	Variables and data types
	Data structures
	Indexing

