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Note: The content of this lab is partially borrowed from Kenneth Tay’s course materials in the Autumn 2019
iteration of this course.

library(tidyverse)

## -- Attaching core tidyverse packages --------————————————-—-—- tidyverse 2.0.0 --
## v dplyr 1.1.1 v readr 2.1.4

## v forcats 1.0.0 v stringr 1.5.0

## v ggplot2 3.4.2 v tibble  3.2.1

## v lubridate 1.9.2 v tidyr 1.3.0

## v purrr 1.0.1

## -- Conflicts ——————————————————————— tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()

## x dplyr::lag() masks stats::lag()

##

i Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all conflicts to become error:

library(nycflights13)

Recall the Stanford_small tibble we created in Lab 3, consisting of all flights in the flights tibble from
the nycflights13 package that went to SFO, SJC, or OAK:

Stanford_small <- flights %>%

filter(dest == "SFO" | dest == "SJC" | dest == "ODAK") %>%
select (month, carrier, origin, dest, air_time, distance) %>/
mutate ( distance / air_time * 60)

group__by(), summarise()

We’d like to learn some quantitative information about the flights.

For example, what was the mean/median air time for flights in our Stanford_small dataset? We can use
the summarise () function to help us:

Stanford_small %>%

##
##
##
##

summarise( mean(air_time))

# A tibble: 1 x 1
mean_airtime
<dbl>
1 NA



Stanford_small %>%
summarise ( median(air_time))

## # A tibble: 1 x 1
## median_airtime
## <dbl>
## 1 NA

The NAs are causing us trouble! We need to specify the na.rm = TRUE option to remove NAs from consider-
ation:

Stanford_small %>%
summarise ( mean(air_time, TRUE) ,
median(air_time, TRUE) )

## # A tibble: 1 x 2

## mean_airtime median_airtime
## <dbl> <dbl>
## 1 346. 345

summarise () gives me a summary of the entire dataset. If I want summaries broken down for each possible
value of a grouping variable, then I have to use summarise() in conjunction with group_by (). group_by()
changes the unit of analysis from the whole dataset to individual groups. The following code groups the
dataset by carrier, then computes the summary statistic for each group. We use arrange() to order in
decreasing order of airtime.

Stanford_small %>%
group_by(carrier) %>%
summarise( mean(air_time, TRUE)) %>%
arrange (desc (mean_airtime))

## # A tibble: 5 x 2
## carrier mean_airtime

##  <chr> <dbl>
## 1 AA 348.
## 2 VX 348.
## 3 DL 347.
## 4 B6 347.
## 5 UA 344.

I can also group by more than one variable. For example, if I wanted to count the number of flights for each
carrier in each month, I could use the following code:

Stanford_small %>%
group_by (month, carrier) %>%
summarise ( n())

## ‘summarise() ¢ has grouped output by ’month’. You can override using the
## ¢.groups‘ argument.



## # A tibble: 60 x 3
## # Groups: month [12]

## month carrier count
## <int> <chr> <int>
## 1 1 AA 120
## 2 1 B6 121
## 3 1 DL 142
##t 4 1 UA 422
## b5 1 VX 124
## 6 2 AA 108
## 7 2 B6 106
## 8 2 DL 127
## 9 2 UA 378
## 10 2 VX 104

## # i 50 more rows

1. Find the minimum, maximum, average, and standard deviation of air time for each (origin, dest) pair
in Stanford_small.

Answer:

Stanford_small %>%
group_by(origin, dest) %>%

summarise ( min(air_time, TRUE) ,
max(air_time, TRUE) ,
mean(air_time, TRUE) ,
sd(air_time, TRUE) )

## ‘summarise() ¢ has grouped output by ’origin’. You can override using the
## ¢.groups‘ argument.

## # A tibble: 4 x 6
## # Groups: origin [2]
## origin dest min_air_time max_air_time avg_air_time sd_air_time

##  <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 EWR SFO 295 420 343. 17.5
## 2 JFK 0AK 304 391 345. 16.1
## 3 JFK SFO 301 490 347. 16.9
## 4 JFK sSJC 305 396 347. 16.5

2. Out of all the flights in the original flights tibble, on average, which origin airport had the longest
delays on flights to SFO?

Answer: Since we only care about flights to SFO, we need to use filter () to first subset to only the rows
where dest is equal to “SFO”:

flights %>%

filter(dest == "SF0") %>%
group_by(origin) %>%
summarise ( mean(arr_delay, TRUE))



## # A tibble: 2 x 2
##  origin mean_delay

## <chr> <dbl>
## 1 EWR 2.34
## 2 JFK 2.88

We see that flights from JFK have the longest average arrival delay.

Joins

We will illustrate joins using a very small and simple example.

dplyr comes loaded with three small tibbles: band_members, band_instruments, and band_instruments2

band_members

## # A tibble: 3 x 2
## name band

## <chr> <chr>

## 1 Mick Stones

## 2 John Beatles
## 3 Paul Beatles

band_instruments

## # A tibble: 3 x 2
## name plays

##  <chr> <chr>

## 1 John guitar

## 2 Paul bass

## 3 Keith guitar

band_instruments?2

## # A tibble: 3 x 2
##  artist plays

## <chr> <chr>

## 1 John  guitar
## 2 Paul bass

## 3 Keith guitar

Suppose we want to add instrument information to the band_members tibble. We can do this by left joining
band_members onto band_instruments, using the common key variable name:

left_join(band_members, band_instruments, "name")

## # A tibble: 3 x 3

## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass



Notice we have one observation for each row in band_members. Since there is no entry for “Mick” in
band_instruments, Mick’s instrument is filled in with NA.

3. Note that we get the same result as above if we exclude the by= argument to left_join() specifying
the key variable:

left_join(band_members, band_instruments)

## Joining with ‘by = join_by(name) *

## # A tibble: 3 x 3

## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass

What is the key variable in this join? Why do we get the same result?

Answer: The key variable is name. We get the same result because, as noted in the help menu for
left_join(), by= is an optional argument and if omitted, by default the key variable(s) will be assumed
to be all columns with matching names in both tibbles that are being joined. Indeed, we can see that
band_members and band_instruments have name in common but no other columns with the same name.

4. Return the same tibble by instead joining band_members onto band_instruments2.  Note:
band_instruments and band_instruments2 have the same information, however they have different
column names.

Answer: Now we need to specify the by= argument in left_join() so R knows which columns to match.

band_members %>Y%
left_join(band_instruments2, c("name"="artist"))

## # A tibble: 3 x 3

## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass

If we wanted to omit any rows where there was no match in the join, we could use inner_join():

band_members %>%
inner_join(band_instruments)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 2 x 3

## name band plays

## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 Paul Beatles bass



Conversely, if we wanted an entry for any row that appears in either tibble, we can use full_join() (also
known as an outer join):

band_members %>Y%
full_join(band_instruments)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 4 x 3

## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Keith <NA> guitar

5. Now do a right join of band_members onto band_instruments. Explain the difference, if any, from the
left join.

right_join(band_members, band_instruments)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 3 x 3

## name band plays
## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 Paul Beatles bass
## 3 Keith <NA> guitar

The row with Mick is gone but now we have a row with Keith. This is because there is a row with Mick in
band_members but not in band_instruments. Conversely there is a row with Keith in band_instruments
but not in band_members

6. If I swap the order of the two tibbles in inner_join(), does the result change? Why or why not?

Answer:

inner_join(band_members, band_instruments)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 2 x 3

## name band plays

## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 Paul Beatles bass



inner_join(band_instruments, band_members)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 2 x 3

## name plays band

##  <chr> <chr> <chr>
## 1 John guitar Beatles
## 2 Paul bass  Beatles

No (aside from the ordering of the columns). An inner join between two tibbles returns one row for each
match between the two tibbles. That doesn’t change if we re-order the two tibbles.

7. Same as the previous question, but for full_join().

Answer:

full_join(band_members, band_instruments)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 4 x 3
## name band plays
##  <chr> <chr> <chr>

## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Keith <NA> guitar

full_join(band_instruments, band_members)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 4 x 3
## name plays band
## <chr> <chr> <chr>

## 1 John guitar Beatles
## 2 Paul bass Beatles
## 3 Keith guitar <NA>

## 4 Mick <NA> Stones

No. An outer join between two tibbles returns at least one row for each row in the two tibbles, regardless of
whether there is a match (putting in NAs appropriately when there is no match). That doesn’t change if we
re-order the two tibbles.

Now we use rbind () to duplicate all the entries in band_instruments():

band_instruments_duped <- rbind(band_instruments, band_instruments)
band_instruments_duped



## # A tibble: 6 x 2
## name plays
## <chr> <chr>

## 1 John guitar
## 2 Paul Dbass
## 3 Keith guitar
## 4 John guitar
## 5 Paul bass
## 6 Keith guitar

Now our left joined tibble also has duplicate entries:

band_members %>Y%
left_join(band_instruments_duped)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 5 x 3
## name band plays
## <chr> <chr> <chr>

## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 John Beatles guitar
## 4 Paul Beatles bass
## 5 Paul Beatles bass

Moral of the story: when you do a left join, you get at least one for each row in the first tibble. If there is
more than one match, you will get all matches, in separate rows.

8. Use your knowledge to predict what would happen if we replaced band_instruments in the right join,
inner join, and full outer join from above with band_instruments_duped. Check your answers.

Answer: If we right join band_members onto band_instruments_duped, then we will get at least one row for
every row in band_instruments_duped, with duplicate rows for each such row if there are multiple matches
(and a single row with an NA if there is no match). There are no duplicate names in band_members, so we
expect the same number of rows as band_instruments_duped:

right_join(band_members, band_instruments_duped)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 6 x 3
## name band plays
## <chr> <chr> <chr>

## 1 John Beatles guitar
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Paul Beatles bass
## 5 Keith <NA> guitar
## 6 Keith <NA> guitar

If we inner join then we should only get 4 rows, as only John and Paul match:



inner_join(band_members, band_instruments_duped)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 4 x 3

## name band plays
## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Paul Beatles bass

Conversely if we do a full join we should get 7 rows; everything in the right join plus the single unmatched
row in band_members:

full_join(band_members, band_instruments_duped)

## Joining with ‘by = join_by(name) ¢

## # A tibble: 7 x 3
## name band plays
## <chr> <chr> <chr>

## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 John Beatles guitar
## 4 Paul Beatles bass
## 5 Paul Beatles bass
## 6 Keith <NA> guitar
## 7 Keith <NA> guitar
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