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Null and alternative hypotheses



Null and alternative hypotheses

A credit card company is running an online advertising campaign.
They have a proposed new ad featuring an athlete (version B) and
want to know whether it leads to more purchases than the existing
ad (version A).

A/B test: Recruit 10,000 credit card users, randomly assign 5,000
to get new ad (treatment group), other 5,000 to get existing ad
(control group)

Those who saw version B averaged 3.2 more purchases than those
who saw version A. Is version B better?



Null and alternative hypotheses

A/B testing is based on the standard statistical framework of
hypothesis testing. There are two hypotheses, which are conflicting
statements about the world that we want to distinguish between
using data.

The null hypothesis (typically denoted H0) corresponds to the “less
interesting” of “default” state of the world, while the alternative
hypothesis (typically denoted H1 or HA) corresponds to the “more
interesting” state of the world.

By default, we assume the null hypothesis is true. However, if the
data we observe is unlikely to occur due to chance under the
assumption that the null hypothesis is true, then we “reject” the
null hypothesis in favor of the alternative hypothesis.



Null and alternative hypotheses

Examples of null hypotheses:
Ads A and B lead to the same number of clicks, on average
Diabetes drug D does not have any effect on insulin levels
Global mean temperatures are not changing over time

Corresponding alternative hypotheses:
Ads A and B do not lead to the same number of clicks, on
average
Diabetes drug D changes insulin levels
Global mean temperatures are changing



One-sided vs. two-sided alternatives

The alternative hypotheses on the previous slide are all two-sided
alternatives. Contrast these with the following one-sided
alternatives:

Ad B leads to more clicks than ad A
Diabetes drug D reduces insulin levels
The Earth is warming



Data-generating processes

Note hypotheses are not statements about your data, but rather
statements about the underlying data-generating process (“state
of the world”)

For example, we (implicitly) assume that the 10,000 users in our
A/B test are randomly sampled from a much larger population. We
are using the limited information from these users to try and figure
out the true effectiveness of ad B for the average person in the
“infinite” population of all users.



Structure of a hypothesis test

A hypothesis test aims to distinguish between H0 and H1 using a
test statistic, a numerical summary of the data. A common example
of a test statistic is the sample average (the mean of all
observations).

1 Determine a desired significance level α, e.g. 0.01 or 0.05.
2 Collect some data.
3 Compute the test statistic from the data.
4 Calculate a p-value using the test statistic.
5 Reject H0 if the p-value is less than α, otherwise fail to reject

H0.



Type I vs. type II error

Suppose H0 is true. If a test (falsely) rejects H0, it’s said to commit
a Type I error. Example: Ads A and B actually have the same
performance, but we reject the null hypothesis that this is the case.

Conversely, suppose H0 is false. If a test (falsely) fails to reject H0,
it’s said to commit a Type II error. Example: Ad B actually leads to
more clicks than ad A (on average over the population of all users),
but the test fails to reject the null hypothesis

It’s important to emphasize that H0 is either true or not — it’s not
random. Also, it can’t be both true and false at the same time. The
core problem is, we don’t know which it is. We can only make an
educated guess using a hypothesis test.



Significance levels

The significance level α of a test is the probability the test makes a
Type I error. It is under the control of the scientist for a given
testing procedure, and typically set (arbitrarily) to something like
0.05 or 0.01.

It’s important to note it only makes sense to speak of the
probability of a type I error when H0 is true. When H0 is false, it’s
impossible to make a Type I error, by definition!



Power

A test that never rejects H0 will never make a Type I error, but is
also not useful when H0 is false — it will never find the good ads!

Thus, a good test also has a small Type II error rate. Statisticians
use the term power to denote the chance of (correctly) rejecting H0
when it is false.

power + type II error rate = 1 or 100%, by definition.



p-values

The p-value for a hypothesis test is the probability of observing a
test statistic more extreme than the observed value, assuming H0 is
true.

The p-value is a mathematical computation based on the value of
the test statistic and the nature of the null hypothesis. More
extreme test statistics, relative to H0, give smaller p-values.

Suppose we obtain a p-value of 0.03 based on the 200 participants
in our trial. If H0 were true, we should only see a p-value smaller
than 0.03, i.e. a test statistic more extreme than the one we actually
got, 3% of the time. At a significance level threshold of 0.05, this is
sufficiently small to reject H0 (but not if we chose α = 0.01).



What a p-value is NOT

A p-value is NOT the probability H0 is true. The truth of H0 is not
random, it is just unknown.



What a p-value is NOT

A small p-value also does not tell you that an effect is actually
meaningful to a human.

In fact, it’s a bit of straw man, just telling you whether the data is
consistent with a counterfactual that the true effect is 0.

Let’s say ad B increases watch time by 0.002 purchases/day on
average. Technically this is not 0 so with a large enough sample size
you will frequently (correctly) reject the null. But in this case it may
not be worth paying the athlete for this more expensive ad.



What a p-value is NOT

Conversely, maybe the true effect is huge but your sample size is too
small for your test to have reasonable power.

Then you will likely make a type II error. Thus you should not
construe a failure to reject as evidence for the null.



t-tests of averages



t-tests of averages

We will not get into the mathematical details of how to design good
test statistics or compute p-values (take Stats 60 for that), but seek
instead to understand some common examples and their R
implementations.



One sample t-test

In a one-sample t-test, we have n independent, quantitative
observations, and H0 is that the true mean of the data-generating
process is equal to a particular value. The test statistic used, as you
might expect, is the sample average of all the observations.

For example, we might want to test whether the average abalone
length is equal to 0.5.

Note the sample mean here is 0.5272. Is this extreme under H0?
The p-value will tell us.
library(tidyverse)
abalone <- read_csv("abalone.csv")
mean(abalone$Length)

## [1] 0.5272167



One sample t-test

Let µ be the average abalone length (in the population our data
comes from). Remember µ is a characteristic of the data-generating
process, not our particular sample.

Our hypotheses (note the two-sided alternative) are then

H0 : µ = 0.5
H1 : µ 6= 0.5



One sample t-test

H0 : µ = 0.5
H1 : µ 6= 0.5

To get the p-value for these hypotheses on the data, we use
t.test(). It is the probability, assuming H0 were true, of observing
a sample mean greater than the observed 0.5272 OR less than
0.5− (0.5272− 0.5) = 0.4728 (for a two-sided alternative, “more
extreme” means “farther away in absolute value”).

Note the mathematical validity of the p-value depends on an
assumption that the different abalone’s lengths are independent and
random.



One sample t-test

t.test(x=abalone$Length, mu=0.5, alternative="two.sided")

##
## One Sample t-test
##
## data: abalone$Length
## t = 3.7817, df = 299, p-value = 0.0001881
## alternative hypothesis: true mean is not equal to 0.5
## 95 percent confidence interval:
## 0.5130535 0.5413798
## sample estimates:
## mean of x
## 0.5272167

With such a small p-value of 0.00019 on our two-sided test, we
emphatically reject H0 at any reasonable significance level.



One-sided test

We could also perform a one-sided t-test, for the alternative
H1 : µ > 0.5:
t.test(x=abalone$Length, alternative="greater", mu=0.5)

##
## One Sample t-test
##
## data: abalone$Length
## t = 3.7817, df = 299, p-value = 9.405e-05
## alternative hypothesis: true mean is greater than 0.5
## 95 percent confidence interval:
## 0.5153419 Inf
## sample estimates:
## mean of x
## 0.5272167

Now the p-value of 9.405e-05, which means 9.405 · 10−5, is the
probability (assuming H0 is true) of observing a sample mean
greater than 0.5272. With such a small p-value, we again reject H0
emphatically.



One-sided test

What if we had the other one-sided alternative hypothesis
H1 : µ < 0.5?
t.test(x=abalone$Length, alternative="less", mu=0.5)

##
## One Sample t-test
##
## data: abalone$Length
## t = 3.7817, df = 299, p-value = 0.9999
## alternative hypothesis: true mean is less than 0.5
## 95 percent confidence interval:
## -Inf 0.5390914
## sample estimates:
## mean of x
## 0.5272167

Now the p-value of 0.999 suggests it is very likely to observe a
sample mean less than 0.5272 when the true mean is 0.5. We
certainly do not reject our null hypothesis here.



Two sample t-test

Another common testing scenario is to check if two groups of
independent observations come from data-generating processes with
different means. For example, do history majors have a higher
average IQ than English majors?

As another example let µ1 be the average arr_delay for flights
from JFK, and µ2 be the average arr_delay for flights from LGA.
How would you interpret the following set of hypotheses, in words?

µ1 − µ2 = 0
µ1 − µ2 > 0



Two sample t-test

The two sample t-test, also using t.test(), can be used to test
the hypotheses on the previous slide, assuming all the flights are
independent:
library(nycflights13)
jfk_flights <- flights %>%

filter(origin=="JFK")
lga_flights <- flights %>%

filter(origin=="LGA")
t.test(x=jfk_flights$arr_delay, y=lga_flights$arr_delay, mu=0)

##
## Welch Two Sample t-test
##
## data: jfk_flights$arr_delay and lga_flights$arr_delay
## t = -1.2062, df = 209301, p-value = 0.2277
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6089919 0.1449775
## sample estimates:
## mean of x mean of y
## 5.551481 5.783488



Two-sample t-test

The p-value of 0.2278 means that there is a 0.2278 probability that
the sample mean JFK delay minus the sample mean LGA delay
would be more than 5.76− 5.55 = 0.23 or less than -0.23 (recall our
alternative is two-sided).

With such a high p-value, we fail to reject H0, since if H0 were true,
it’d be plausible to see a difference in mean arrival delays as extreme
as we did.

Note the independence assumption is probably not valid here. If
New York City had bad weather on a given day, you’d likely see
delays at both JFK and LGA.



Paired t-test

Since we have the same users before and after the change, the
watchtime before and after the change are not independent.

However, it is typically assumed that different users are independent
(not a perfect assumption in practice).

In that case, we can recover independence by taking differences: Let
Di be user i ’s watchtime after the change minus their watch time
before the change.

Then perform a one-sample t-test on the differences Di .



Tests of proportions



Tests of proportions

The t-tests we discussed are designed to test hypotheses about
averages of continuous, quantitative variables.

Sometimes, we instead want to test hypotheses about proportions.

For example, given a poll of 600 randomly chosen registered voters
in Wisconsin, we may want to test if the true support of presidential
candidate A is 50%.



One sample test of proportions

Suppose 310 of the WI voters polled said they would support
candidate A. We can test whether this provides enough evidence to
reject the null that the candidate has 50% support using
prop.test() in R:
prop.test(x=310, n=600, p=0.5, alternative="two.sided")

##
## 1-sample proportions test with continuity correction
##
## data: 310 out of 600, null probability 0.5
## X-squared = 0.60167, df = 1, p-value = 0.4379
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.4758723 0.5572445
## sample estimates:
## p
## 0.5166667

With a p-value of 0.43, we fail to reject H0.



Two sample test of proportions

We can also test a difference in proportions in two different
populations.

For example, suppose 800 voters in Michigan were also polled, with
only 385 of them supporting candidate A.

We want to test the null that the proportion of support in Michigan
and Wisconsin is the same.



Two-sample test of proportions

prop.test(x=c(310, 385), n=c(600, 800), alternative="two.sided")

##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(310, 385) out of c(600, 800)
## X-squared = 1.5816, df = 1, p-value = 0.2085
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.01893398 0.08976732
## sample estimates:
## prop 1 prop 2
## 0.5166667 0.4812500

Note: The validity of the p-value in a two sample test of proportions
hinges on the samples being independent.
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