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Note: The content of this lab is partially borrowed from Kenneth Tay’s course materials in the Autumn 2019
iteration of this course.
library(tidyverse)

## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.4.4 v tibble 3.2.1
## v lubridate 1.9.3 v tidyr 1.3.1
## v purrr 1.0.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(nycflights13)

Recall the Stanford_small tibble we created in Lab 3, consisting of all flights in the flights tibble from
the nycflights13 package that went to SFO, SJC, or OAK, with an additional column for speed:
Stanford_small <- flights %>%

filter(dest == "SFO" | dest == "SJC" | dest == "OAK") %>%
select(month, carrier, origin, dest, air_time, distance) %>%
mutate(speed = distance / air_time * 60)

group_by(), summarise()
We’d like to learn some quantitative information about the flights.

For example, what was the mean/median air time for flights in our Stanford_small dataset? We can use
the summarise() function to help us:
Stanford_small %>%

summarise(mean_airtime = mean(air_time))

## # A tibble: 1 x 1
## mean_airtime
## <dbl>
## 1 NA
Stanford_small %>%

summarise(median_airtime = median(air_time))
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## # A tibble: 1 x 1
## median_airtime
## <dbl>
## 1 NA

The NAs are causing us trouble! We need to specify the na.rm = TRUE option to remove NAs from consideration:
Stanford_small %>%

summarise(mean_airtime = mean(air_time, na.rm = TRUE),
median_airtime = median(air_time, na.rm=TRUE))

## # A tibble: 1 x 2
## mean_airtime median_airtime
## <dbl> <dbl>
## 1 346. 345

summarise() gives me a summary of the entire dataset. If I want summaries broken down for each possible
value of a grouping variable, then I have to use summarise() in conjunction with group_by(). group_by()
changes the unit of analysis from the whole dataset to individual groups. The following code groups the
dataset by carrier, then computes the summary statistic for each group. We use arrange() to order in
decreasing order of airtime.
Stanford_small %>%

group_by(carrier) %>%
summarise(mean_airtime = mean(air_time, na.rm = TRUE)) %>%
arrange(desc(mean_airtime))

## # A tibble: 5 x 2
## carrier mean_airtime
## <chr> <dbl>
## 1 AA 348.
## 2 VX 348.
## 3 DL 347.
## 4 B6 347.
## 5 UA 344.

I can also group by more than one variable. For example, if I wanted to count the number of flights for each
carrier in each month, I could use the following code:
Stanford_small %>%

group_by(month, carrier) %>%
summarise(count = n())

## `summarise()` has grouped output by 'month'. You can override using the
## `.groups` argument.

## # A tibble: 60 x 3
## # Groups: month [12]
## month carrier count
## <int> <chr> <int>
## 1 1 AA 120
## 2 1 B6 121
## 3 1 DL 142
## 4 1 UA 422
## 5 1 VX 124
## 6 2 AA 108
## 7 2 B6 106
## 8 2 DL 127
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## 9 2 UA 378
## 10 2 VX 104
## # i 50 more rows

1. Find the minimum, maximum, average, and standard deviation of air time for each (origin, dest) pair
in Stanford_small.

2. Out of all the flights in the original flights tibble, on average, which origin airport had the longest
delays on flights to SFO?

Joins
We will illustrate joins using a very small and simple example.

dplyr comes loaded with three small tibbles: band_members, band_instruments, and band_instruments2:
band_members

## # A tibble: 3 x 2
## name band
## <chr> <chr>
## 1 Mick Stones
## 2 John Beatles
## 3 Paul Beatles
band_instruments

## # A tibble: 3 x 2
## name plays
## <chr> <chr>
## 1 John guitar
## 2 Paul bass
## 3 Keith guitar
band_instruments2

## # A tibble: 3 x 2
## artist plays
## <chr> <chr>
## 1 John guitar
## 2 Paul bass
## 3 Keith guitar

Suppose we want to add instrument information to the band_members tibble. We can do this by left joining
band_members onto band_instruments, using the common key variable name:
left_join(band_members, band_instruments, by="name")

## # A tibble: 3 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass

Notice we have one observation for each row in band_members. Since there is no entry for “Mick” in
band_instruments, Mick’s instrument is filled in with NA.

3. Note that we get the same result as above if we exclude the by= argument to left_join() specifying
the key variable:
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left_join(band_members, band_instruments)

## Joining with `by = join_by(name)`

## # A tibble: 3 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass

What is the key variable in this join? Why do we get the same result? Hint: Check the help page!

4. Return the same tibble by instead joining band_members onto band_instruments2. Note:
band_instruments and band_instruments2 have the same information, however they have different
column names.

If we wanted to omit any rows where there was no match in the join, we could use inner_join():
band_members %>%

inner_join(band_instruments)

## Joining with `by = join_by(name)`

## # A tibble: 2 x 3
## name band plays
## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 Paul Beatles bass

Conversely, if we wanted an entry for any row that appears in either tibble, we can use full_join() (also
known as an outer join):
band_members %>%

full_join(band_instruments)

## Joining with `by = join_by(name)`

## # A tibble: 4 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Keith <NA> guitar

5. Now do a right join of band_members onto band_instruments. Explain the difference, if any, from the
left join.

6. If I swap the order of the two tibbles in inner_join(), does the result change? Why or why not?

7. Same as the previous question, but for full_join().

Now we use rbind() to duplicate all the entries in band_instruments():
band_instruments_duped <- rbind(band_instruments, band_instruments)
band_instruments_duped

## # A tibble: 6 x 2
## name plays
## <chr> <chr>
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## 1 John guitar
## 2 Paul bass
## 3 Keith guitar
## 4 John guitar
## 5 Paul bass
## 6 Keith guitar

Now our left joined tibble also has duplicate entries:
band_members %>%

left_join(band_instruments_duped)

## Joining with `by = join_by(name)`

## # A tibble: 5 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 John Beatles guitar
## 4 Paul Beatles bass
## 5 Paul Beatles bass

Moral of the story: when you do a left join, you get at least one for each row in the first tibble. If there is
more than one match, you will get all matches, in separate rows.

8. Use your knowledge to predict what would happen if we replaced band_instruments in the right join,
inner join, and full outer join from above with band_instruments_duped. Check your answers with
code.
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