Lecture 7: Simple linear regression
Stats 32: Introduction to R for Undergraduates

Harrison Li

April 23, 2024

Dependent and independent variables

Ordinary least squares

Im()

Binary predictors

Reading: Chapter 5 (except 5.1.3 and 5.2.3)

Dependent and independent variables

Dependent and independent variables

Today, we will begin our final unit of the course on data analysis.
In particular, we will focus on simple linear regression, a standard
and widely useful technique for quantifying the relationship between
two variables.

In simple linear regression, we have one dependent variable (or
outcome variable), typically labeled y, and one independent
variable (or explanatory/predictor variable), typically labeled x. We
want to understand how changes in the independent variable (x)
correspond to changes in the dependent variable (y).

Correlation

To understand the idea of a “relationship” between two variables,
we introduce the mathematical concept of correlation.

We say two variables x and y are positively correlated if an
increase in one is associated with an increase in the other. This can
be determined visually by a scatterplot of x versus y that is
concentrated around an upward sloping line.

By contrast, x and y are negatively correlated if an increase in
one is associated with a decrease in the other. This corresponds to
a scatterplot concentrated around a downward sloping line.

Correlation

Is Length positively correlated, negatively correlated, or
uncorrelated with Diameter in the abalone tibble?

library(tidyverse)
abalone <- read_csv("abalone.csv")
abalone %>7
ggplot (aes(x=Length, y=Diameter)) +
geom_point ()

°
0.6- %
§ 0.5-
2 0.4-
8
N 0.3-
0.2- 0"”
cn®’
0.1' 1 1 1 1
0.2 0.4 0.6 0.8

Length

Correlation coefficient

The correlation coefficient is a numerical measure of correlation
between two (numeric) data variables. It takes on values between -1
and 1.
m A coefficient of 1 indicates a perfect positive correlation,
i.e. data lie perfectly along a straight line with positive slope
m A coefficient of -1 indicates a perfect negative correlation,
i.e. data lie perfectly along a straight line with negative slope
m A coefficient of 0 indicates no correlation

The correlation coefficient can be computed with cor(). We see
Length and Diameter are very highly (positively) correlated:

cor(abalone$Length, abalone$Diameter)

[1] 0.9881948

Confounding variables

|
Correlation does not imply causation!

A strongly positive or negative correlation does NOT necessarily
mean changes in x cause changes in y, or vice versa.

For example, the number of shark attacks in each month is
positively correlated with monthly ice cream consumption in the
United States. But it would be silly to conclude that eating ice
cream causes you to be more likely to get eaten by a shark!

The key issue here is that both are associated with hot weather
(more people going to the beach, and wanting to eat ice cream to
cool off). In this case, the outdoor temperature is called a
confounding variable.

Ordinary least squares

Ordinary least squares

|
All models are wrong but some models are useful — George Box

Simple linear regression is the most basic way to model the
relationship between y and x. Specifically, it models y to be
approximately a linear function of x.

Mathematically we can write this as

y=0B+pr1xx+e

where [y is the intercept, S is the slope of the line, and e is an
error term that represents “random noise” centered around 0, which
is not explicitly modeled.

Note that this linear approximation may be poor in some settings,
but is often still useful.

Estimating the slope and intercept

Once we've decided to model y as a linear function of x, it remains
to figure out how we can find values By and ;1 to “fit” the data. By
far the most common method of doing so is ordinary least squares

(OLS).

As the name suggests, OLS finds 8y and (1 to minimize the sum of
squared deviations between y and the regression line.
Mathematically, 89 and (1 are selected to minimize

S 1(yi — Bo — B * xi)2.

Here (x1,¥1),...,(Xn, yn) are the n pairs of independent and
dependent variables in our tibble.

A picture of OLS

OLS considers all possible blue lines and picks the one that
minimizes the sum of the squared lengths of the red lines:

While you can find algebraic expressions for 5y and 51 in any
introductory statistics textbook, R can easily compute them for you
using the built-in Im() function.

Let's regress Diameter (dependent variable) on Length
(independent variable) in the abalone tibble, corresponding to the
scatterplot we saw earlier. We input the result of the 1m() call into
summary () to get some important information about the model:

library(moderndive)
summary (Im(formula=Diameter~Length, data=abalone))

##

Call:

1lm(formula = Diameter ~ Length, data = abalone)

##

Residuals:

Min 1Q Median 3Q Max

-0.059475 -0.009019 -0.000988 0.008421 0.083292

##

Coefficients:

Estimate Std. Error t value Pr(>ltl)

(Intercept) -0.020211 0.003967 -5.094 6.22e-07 *xx
Length 0.815498 0.007324 111.348 < 2e-16 *xx
#t -

Signif. codes: 0 '#%x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 0.01579 on 298 degrees of freedom
Multiple R-squared: 0.9765, Adjusted R-squared: 0.9765
F-statistic: 1.24e+04 on 1 and 298 DF, p-value: < 2.2e-16

We get 1 = 0.815 and g = —0.020 (only look at the estimate
column under Coefficients for now).

Formula and data

Our call to 1m() looked like this: 1m(formula=Diameter ~
Length, data=abalone)

The first argument to 1m() is called a formula. The column name
corresponding to the dependent variable y goes first, followed by a
tilde ~, followed by the column name corresponding to the
independent variable x.

The second argument, data, is simply the name of the tibble where
the named columns can be found. Think of it like the first argument
in a dplyr verb (though in Im(), it is no longer the first argument)

Use the data argument!

Note that the data argument to 1m() is optional; we could have
simply written

1m(formula=abalone$Diameter-~abalone$Length) %>%
get_regression_table()

A tibble: 2 x 7

term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept -0.02 0.004 -5.09 0 -0.028 -0.012
2 abalone$Length 0.815 0.007 111. 0 0.801 0.83

but this will lead to annoying errors in later sections. It's best
practice to have both variables in the same tibble (as appropriately
named columns), and to use the data argument. It's kind of similar
in spirit to the .data argument in dplyr verbs, though 1m() long
predates the tidyverse.

Plotting

We can use geom_abline() to add a line onto a plot created using
ggplot (). This lets us easily visualize the regression line on top of
the scatterplot.

We need to pass in the slope and intercept to geom_abline(). The
output of 1m() is a complex named list; one of its entries is named
coefficients, so we can extract it with the $ notation:

Plotting

model <- lm(formula=Diameter ~ Length, data=abalone)
coefs <- model$coefficients
coefs

(Intercept) Length
-0.02021087 0.81549812
intercept <- coefs[1]
slope <- coefs[2]
abalone 7>%
ggplot (aes(x=Length, y=Diameter)) +
geom_point() +
geom_abline(slope=slope, intercept=intercept, colour="red")

Diameter

COO000
Phwruo
1

0.2 0.4 0.6 0.8
Length

Indeed, the regression line seems to fit the data well!

Prediction

Once we have the slope and intercept of the regression line (5 and
B1), we can use them to predict y given x. For instance, how would
we predict the diameter of an abalone with length 0.657

Answer: we simply find the y value on our regression line
corresponding to the x value 0.65:

Bo+ B1 % x = —0.020 + 0.815 % 0.65 = 0.51

Prediction

We can let R automatically do the prediction for us using the
predict () function. We pass it two arguments: the 1m() object
returned by the call to Im() (which we stored in the variable
model), and the newdata argument, which must be a one-column
tibble (or data frame) of new predictor values with the same column
name as when we fit the model.

predict(object=model, newdata=tibble(Length=0.65))

#i#t 1
0.5098629

Prediction

Note if you don’t specify newdata, R will return the predictions for
all the x values in the original data:

head(predict(object=model))

1 2 3 4 5 6
0.4894755 0.4853980 0.4364681 0.2815234 0.4650105 0.4201581

You can get predictions for multiple new data points simultaneously,
if the tibble passed into the newdata argument has multiple rows:
predict (object=model, newdata=tibble(Length=c(0.3, 0.4, 0.7)))

1 2 3
0.2244386 0.3059884 0.5506378

Interpretation

How do we interpret our values for 8y and (317

From the regression equation y = 5y + (1 * x, we see that Jy is the
prediction when x = 0.

(1 is the slope of the regression line, and hence corresponds to the
predicted change in y for each 1 unit increase in x. In our abalone
example, we can say that we estimate each unit increase in diameter
is associated with a 0.815 unit increase in length.

Binary predictors

Binary predictors

So far, we've used simple linear regression under the assumption
that both the outcome variable and the predictor are quantitative.

However, linear regression also works well when the predictor is
categorical. Today, we will consider the case of a binary predictor,
that is, a categorical predictor that can only take on one of 2
possible values.

Binary predictors

Typically, binary predictors are encoded as 0 or 1. We must specify
which possibility corresponds to 0, and which corresponds to 1.

From the regression line equation y = By + 51 * x, we see that if x
is binary, the regression prediction is 89 when x = 0 and 5y + 51
when x = 1.

Thus, 1 can be interpreted as: based on my regression, how much
greater do | expect y to be when x = 1, compared to when x = 07

Binary predictors

Let's define a dep_state variable in £1ights for the state of the
origin airport for each flight (either NY or NJ), and regress the
arrival delay arr_delay against dep_state.

Since flights$dep_state will be a character vector taking on 2
possible values, Im() will know to treat this as a binary predictor (in
fact it will convert it to a factor under the hood).

Binary predictors

library(nycflights13)

flights_reg <- flights %>%
mutate(dep_state=if_else(origin=="EWR", "NJ", "NY"))

summary (Ilm(formula=arr_delay~dep_state, data=flights_reg))

##

Call:

lm(formula = arr_delay ~ dep_state, data = flights_reg)
##

Residuals:

#4# Min 1Q Median 3Q Max

-95.11 -23.66 -11.66 7.34 1266.34

##

Coefficients:

Estimate Std. Error t value Pr(>ltl)

(Intercept) 9.1071 0.1303 69.88 <2e-16 **x
dep_stateNY -3.4440 0.1626 -21.18 <2e-16 **x
-

Signif. codes: 0 '#%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 44.6 on 327344 degrees of freedom

(9430 observations deleted due to missingness)

Multiple R-squared: 0.001368, Adjusted R-squared: 0.001365
F-statistic: 448.4 on 1 and 327344 DF, p-value: < 2.2e-16

Binary predictors

We see a row in the coefficients table labeled dep_stateNY. This
indicates that x=1 corresponds to dep_state="NY" while x=0
corresponds to dep_state="NJ".

By default, R sets the reference level (the level corresponding to
x=0 when used as a predictor in 1m()) for a factor variable to be
the first alphabetically. This can be changed using fct_relevel ()
(recall Lab 2).

We conclude, based on the coefficient estimate of -3.444, that
flights leaving from the NY airports (JFK or LGA) tend to be
delayed an average of 3.444 minutes less than flights leaving from
EWR (in NJ).

	Dependent and independent variables
	Ordinary least squares
	lm()
	Binary predictors

