
Lab 2 Solutions
Stats 32: Introduction to R for Undergraduates

Harrison Li

April 4, 2024

Your solutions to this lab should be uploaded to Gradescope as a knitted .pdf file before 1:20 pm today.

Please type text responses to each question in the space below. You may also need to write code, which must
go in a code chunk.

Note: The content of this lab is borrowed heavily from Kenneth Tay’s course materials in the Autumn 2019
iteration of this course.

Functions
R has many built-in functions (and many more functions in packages) that perform certain operations on one
or more arguments (inputs), and returns a particular value (or output).

The help page for a function, accessed via the syntax ?functionName where functionName is a placeholder
for the name of the function, will show you a description of all of its arguments, followed by some text about
what the function does, followed by information about its value.

1. What does the function colSums() (in the built-in base package) do? How many arguments does it
have? What is the minimum number of arguments you need to specify when calling it?

Answer: From the help page (type ?colSums), we see colSums() computes the sum of each column in a
2-dimensional (or higher) array (e.g. a matrix or data frame). It takes 3 arguments: x, na.rm, and dims,
though only x does not have a default value, so the minimum number of arguments that need to be specified
is 1.

We can also write our own functions! Let’s write one called multiply_two that takes in a single input, x,
converts it to numeric, and multiplies it by 2:
multiply_two <- function(x){

x <- as.numeric(x)
return(2*x)

}

2. Write your own function called reciprocal that computes the reciprocal (multiplicative inverse) of a
single input x. Verify the function works with some different numeric values of x, such as 2, 0.25, and
“-4”. What happens if you try calling reciprocal(0)? How about reciprocal("Statistics")?

Answer:
reciprocal <- function(x) {

y <- 1 / x
return(y)

}

reciprocal(2)

1

[1] 0.5
reciprocal(0.25)

[1] 4
reciprocal(-4)

[1] -0.25

If we call reciprocal(0) we get infinity:
reciprocal(0)

[1] Inf

With reciprocal("Statistics") we get an error (commented out so that the document can knit)
reciprocal("Statistics")

Packages
To install a package pkgName, simply type install.packages("pkgName") into the console.

To use functions in the package, we first have to load the package: library(pkgName). If the package has
not been installed yet, we will get an error. Otherwise, functions in the package are available for use once
you have loaded the package.

Data frames
Packages not only give us access to user-created functions, but also user-created datasets, which are typically
stored as data frames (or tibbles).

Let’s load the fueleconomy package. If you haven’t installed this package yet, run this command in the
console first: install.packages("fueleconomy").
library(fueleconomy)

Loading the package automatically adds a data frame called vehicles to the environment. You can see it by
clicking the Global Environment dropdown menu, and then selecting package:fueleconomy.

Seeing parts of the data

33,000 observations is a lot of observations to look through. Instead of looking through all of it, we can use
various functions to give us a feel for the data.

You can use the head() and tail() functions to display the first few or last few rows of the dataset.

3. Display the first 6 rows of the vehicles data frame. Then display the last 2 rows. (Hint: Look at the
help pages for head() and tail())

Answer:
head(vehicles)

id make model year class trans
1 13309 Acura 2.2CL/3.0CL 1997 Subcompact Cars Automatic 4-spd
2 13310 Acura 2.2CL/3.0CL 1997 Subcompact Cars Manual 5-spd
3 13311 Acura 2.2CL/3.0CL 1997 Subcompact Cars Automatic 4-spd
4 14038 Acura 2.3CL/3.0CL 1998 Subcompact Cars Automatic 4-spd
5 14039 Acura 2.3CL/3.0CL 1998 Subcompact Cars Manual 5-spd
6 14040 Acura 2.3CL/3.0CL 1998 Subcompact Cars Automatic 4-spd

2

drive cyl displ fuel hwy cty
1 Front-Wheel Drive 4 2.2 Regular 26 20
2 Front-Wheel Drive 4 2.2 Regular 28 22
3 Front-Wheel Drive 6 3.0 Regular 26 18
4 Front-Wheel Drive 4 2.3 Regular 27 19
5 Front-Wheel Drive 4 2.3 Regular 29 21
6 Front-Wheel Drive 6 3.0 Regular 26 17
tail(vehicles, 2)

id make model year class trans
33441 5498 Yugo GV/GVX 1989 Subcompact Cars Manual 5-spd
33442 1745 Yugo Gy/yugo GVX 1986 Minicompact Cars Manual 4-spd
drive cyl displ fuel hwy cty
33441 Front-Wheel Drive 4 1.3 Regular 28 23
33442 Front-Wheel Drive 4 1.1 Regular 29 22

Under the hood, a data frame is implemented as a named list of vectors. Each column (a vector) is a single
element in the list. Hence, whatever we can do with named lists, we can do with data frames. For example,
we can get the data frame’s column names using names():
names(vehicles)

[1] "id" "make" "model" "year" "class" "trans" "drive" "cyl" "displ"
[10] "fuel" "hwy" "cty"

To access the values in a particular column of a data frame, we can use either the [[or $ notation, just like
with named lists:
head(vehicles[["class"]])

[1] "Subcompact Cars" "Subcompact Cars" "Subcompact Cars" "Subcompact Cars"
[5] "Subcompact Cars" "Subcompact Cars"
head(vehicles$class)

[1] "Subcompact Cars" "Subcompact Cars" "Subcompact Cars" "Subcompact Cars"
[5] "Subcompact Cars" "Subcompact Cars"

4. What type of data structure is vehicles$class?

Answer: It is a vector (as we are indexing into a single element of the data frame vehicles, viewed as a
named list of vectors).

Since the number of columns in a data frame is just the number of elements in a list, we can get the number
of columns using length():
length(vehicles)

[1] 12

Interestingly, data frames can act like matrices too. For example, we can use dim() to figure out the number
of rows and columns in the data frame:
dim(vehicles)

[1] 33442 12

We can also index into the data frame by position as if it were a matrix, though this is not recommended for
clarity’s sake:
head(vehicles[,5]) # not recommended since you have to manually keep track of what the fifth column is

3

[1] "Subcompact Cars" "Subcompact Cars" "Subcompact Cars" "Subcompact Cars"
[5] "Subcompact Cars" "Subcompact Cars"

5. What is the make of the 30th vehicle in the vehicles data frame?

Answer:
vehicles$make[30]

[1] "Acura"

Another useful way to get a quick snapshot of the data in a data frame is to use the summary() function:
summary(vehicles)

id make model year
Min. : 1 Length:33442 Length:33442 Min. :1984
1st Qu.: 8361 Class :character Class :character 1st Qu.:1991
Median :16724 Mode :character Mode :character Median :1999
Mean :17038 Mean :1999
3rd Qu.:25265 3rd Qu.:2008
Max. :34932 Max. :2015
##
class trans drive cyl
Length:33442 Length:33442 Length:33442 Min. : 2.000
Class :character Class :character Class :character 1st Qu.: 4.000
Mode :character Mode :character Mode :character Median : 6.000
Mean : 5.772
3rd Qu.: 6.000
Max. :16.000
NA's :58
displ fuel hwy cty
Min. :0.000 Length:33442 Min. : 9.00 Min. : 6.00
1st Qu.:2.300 Class :character 1st Qu.: 19.00 1st Qu.: 15.00
Median :3.000 Mode :character Median : 23.00 Median : 17.00
Mean :3.353 Mean : 23.55 Mean : 17.49
3rd Qu.:4.300 3rd Qu.: 27.00 3rd Qu.: 20.00
Max. :8.400 Max. :109.00 Max. :138.00
NA's :57

We note that we don’t get much useful information for the non-numeric variables - we are simply told they
are of class “character”. More on this later.

Getting an overview of the data

For an overview of the entire data set, the str() function we introduced last class is very handy. When
applied to a data frame, str() goes through each column and tells us what type of variable it is, as well as
the first couple of values for the column:
str(vehicles)

Classes 'tbl_df', 'tbl' and 'data.frame': 33442 obs. of 12 variables:
$ id : num 13309 13310 13311 14038 14039 ...
$ make : chr "Acura" "Acura" "Acura" "Acura" ...
$ model: chr "2.2CL/3.0CL" "2.2CL/3.0CL" "2.2CL/3.0CL" "2.3CL/3.0CL" ...
$ year : num 1997 1997 1997 1998 1998 ...
$ class: chr "Subcompact Cars" "Subcompact Cars" "Subcompact Cars" "Subcompact Cars" ...
$ trans: chr "Automatic 4-spd" "Manual 5-spd" "Automatic 4-spd" "Automatic 4-spd" ...
$ drive: chr "Front-Wheel Drive" "Front-Wheel Drive" "Front-Wheel Drive" "Front-Wheel Drive" ...

4

$ cyl : num 4 4 6 4 4 6 4 4 6 5 ...
$ displ: num 2.2 2.2 3 2.3 2.3 3 2.3 2.3 3 2.5 ...
$ fuel : chr "Regular" "Regular" "Regular" "Regular" ...
$ hwy : num 26 28 26 27 29 26 27 29 26 23 ...
$ cty : num 20 22 18 19 21 17 20 21 17 18 ...

Note that the default types for the variables may not be what you want.

6. What is a more sensible type for the id variable? Convert vehicles$id (the id column in the data
frame) into this type, using the appropriate as.x() function. Reassign this to vehicles$id to update
the content of vehicles appropriately.

Answer: Currently id is numeric:
typeof(vehicles$id)

[1] "double"

Character is a more sensible type, as we do not think of ID numbers as having a quantitative interpretation,
but rather as a raw sequence of digits, serving the same role as if they were letters or other non-numeric
characters.
vehicles$id <- as.character(vehicles$id)

Factors
Recall that in the output of summary(vehicles), we did not get any useful information about the character
variables. But if our character variables can only take one of several values (eye color, age group), we might
naturally want to know e.g. how many observations in our data have each of these values.

In that case, the table() function is helpful:
table(vehicles$drive)

##
2-Wheel Drive 4-Wheel Drive
507 699
4-Wheel or All-Wheel Drive All-Wheel Drive
6647 1267
Front-Wheel Drive Part-time 4-Wheel Drive
12233 96
Rear-Wheel Drive
11993

Another option is to have R treat categorical variables as factors. Factors represent categorical variables:
variables that can take on one of several possible values. Examples include race (in a dataset of personal
characteristics) or brand (in a dataset about cereal). Categories can be unordered (e.g. eye color; we call
them nominal variables), or ordered (e.g. age group; we call them ordinal variables).

We can make a character variable into a factor variable by using as.factor(). Then summary() gives more
useful information.
vehicles$drive <- as.factor(vehicles$drive)
summary(vehicles$drive)

2-Wheel Drive 4-Wheel Drive
507 699
4-Wheel or All-Wheel Drive All-Wheel Drive
6647 1267
Front-Wheel Drive Part-time 4-Wheel Drive

5

12233 96
Rear-Wheel Drive
11993

Let’s look at the internal structure of the factor variable:
str(vehicles$drive)

Factor w/ 7 levels "2-Wheel Drive",..: 5 5 5 5 5 5 5 5 5 5 ...

Notice that the words (“2 Wheel Drive”, etc.) have been changed into numbers! That’s because R assigns
each category a number. We can see this assignment somewhat by calling levels(), which shows us the
“levels”, or categories, for this variable:
levels(vehicles$drive)

[1] "2-Wheel Drive" "4-Wheel Drive"
[3] "4-Wheel or All-Wheel Drive" "All-Wheel Drive"
[5] "Front-Wheel Drive" "Part-time 4-Wheel Drive"
[7] "Rear-Wheel Drive"

So 2-Wheel Drives are labeled 1, and so on. By default, R assigns this internal labeling by alphabetical order.
We can change the order of this labeling using the fct_relevel() function in the tidyverse. For example,
suppose we want 4-Wheel Drive and All-Wheel Drive to be the first two levels:
library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
vehicles$drive <- fct_relevel(.f=vehicles$drive, "4-Wheel Drive", "All-Wheel Drive")
levels(vehicles$drive)

[1] "4-Wheel Drive" "All-Wheel Drive"
[3] "2-Wheel Drive" "4-Wheel or All-Wheel Drive"
[5] "Front-Wheel Drive" "Part-time 4-Wheel Drive"
[7] "Rear-Wheel Drive"

Now suppose we want to make “Front-Wheel Drive” the second level:
vehicles$drive <- fct_relevel(.f=vehicles$drive, "Front-Wheel Drive", after=1)
levels(vehicles$drive)

[1] "4-Wheel Drive" "Front-Wheel Drive"
[3] "All-Wheel Drive" "2-Wheel Drive"
[5] "4-Wheel or All-Wheel Drive" "Part-time 4-Wheel Drive"
[7] "Rear-Wheel Drive"

7. Convert the class variable in vehicles to a factor. How many levels does it have? Is it nominal or
ordinal?

Answer:

6

vehicles$class <- as.factor(vehicles$class)
levels(vehicles$class)

[1] "Compact Cars" "Large Cars"
[3] "Midsize Cars" "Midsize Station Wagons"
[5] "Midsize-Large Station Wagons" "Minicompact Cars"
[7] "Minivan - 2WD" "Minivan - 4WD"
[9] "Small Pickup Trucks" "Small Pickup Trucks 2WD"
[11] "Small Pickup Trucks 4WD" "Small Sport Utility Vehicle 2WD"
[13] "Small Sport Utility Vehicle 4WD" "Small Station Wagons"
[15] "Special Purpose Vehicle" "Special Purpose Vehicle 2WD"
[17] "Special Purpose Vehicle 4WD" "Special Purpose Vehicles"
[19] "Special Purpose Vehicles/2wd" "Special Purpose Vehicles/4wd"
[21] "Sport Utility Vehicle - 2WD" "Sport Utility Vehicle - 4WD"
[23] "Standard Pickup Trucks" "Standard Pickup Trucks 2WD"
[25] "Standard Pickup Trucks 4WD" "Standard Pickup Trucks/2wd"
[27] "Standard Sport Utility Vehicle 2WD" "Standard Sport Utility Vehicle 4WD"
[29] "Subcompact Cars" "Two Seaters"
[31] "Vans" "Vans Passenger"
[33] "Vans, Cargo Type" "Vans, Passenger Type"

We see there are 34 different levels, i.e. there are 34 different classes represented in the vehicles data frame.
There is no inherent ordering in these levels, so the variable is nominal, not ordinal.

7

	Functions
	Packages
	Data frames
	Seeing parts of the data
	Getting an overview of the data

	Factors

