
Lab 7
Stats 32: Introduction to R for Undergraduates

Harrison Li

04/23/2024

Linear regression is probably the most fundamental statistical tool for prediction and modeling due to its
simplicity and versatility. We will demonstrate it using the tidyverse’s mpg dataset, which looks at the miles
per gallon (mileage) of various cars, along with some of their other attributes:
library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
summary(mpg)

manufacturer model displ year
Length:234 Length:234 Min. :1.600 Min. :1999
Class :character Class :character 1st Qu.:2.400 1st Qu.:1999
Mode :character Mode :character Median :3.300 Median :2004
Mean :3.472 Mean :2004
3rd Qu.:4.600 3rd Qu.:2008
Max. :7.000 Max. :2008
cyl trans drv cty
Min. :4.000 Length:234 Length:234 Min. : 9.00
1st Qu.:4.000 Class :character Class :character 1st Qu.:14.00
Median :6.000 Mode :character Mode :character Median :17.00
Mean :5.889 Mean :16.86
3rd Qu.:8.000 3rd Qu.:19.00
Max. :8.000 Max. :35.00
hwy fl class
Min. :12.00 Length:234 Length:234
1st Qu.:18.00 Class :character Class :character
Median :24.00 Mode :character Mode :character
Mean :23.44
3rd Qu.:27.00
Max. :44.00

1

Exploratory analysis
Before jumping into any sort of statistical modeling, you always want to be clear about what scientific
question you’re trying to answer. For our purposes, let’s say we’re interested in understanding how to predict
a car’s highway mileage hwy from its city mileage cty.

1. What are the dependent and independent variables in this setting?

Next, we do some exploratory data analysis to get an idea of your data’s behavior. This often involves data
wrangling and/or visualization, which is why we spent time in this class studying the dplyr and ggplot2
packages!

Since we have two quantitative variables, it’s natural to look at a scatterplot:
mpg %>%

ggplot(aes(x=cty, y=hwy)) +
geom_point()

20

30

40

10 15 20 25 30 35
cty

hw
y

To avoid having points right on top of each other (this is relevant here since we have a lot of cars, and their
mileages are given as integers), we can use geom_jitter() instead of geom_point()
mpg %>%

ggplot(aes(x=cty, y=hwy)) +
geom_jitter()

2

20

30

40

10 20 30
cty

hw
y

There indeed seems to be a strong, roughly linear relationship between y and x, justifying the use of a linear
regression model.

To quantify the strength of the relationship, we can look at the correlation coefficient:
cor(mpgcty, mpghwy)

[1] 0.9559159

With a correlation close to +1, there is a strong positive relationship between city and highway mpg. This is
consistent with our scatterplot.

Note the correlation between x and y is the same as the correlation between y and x:
cor(mpghwy, mpgcty) == cor(mpgcty, mpghwy)

[1] TRUE

We now also visualize the relationship between fuel efficiency vs. year with a scatterplot. Note the use of
pivot_longer() to create a longer version of the mpg tibble with twice the number of rows, containing a
column called MPG_type that is either cty or hwy.
mpg %>%

pivot_longer(names_to="MPG_type",
values_to="fuel_efficiency",
cols=c(cty, hwy)) %>%

ggplot(aes(x=year, y=fuel_efficiency)) +
geom_point(aes(colour=MPG_type))

3

10

20

30

40

2000 2002 2004 2006 2008
year

fu
el

_e
ffi

ci
en

cy

MPG_type

cty

hwy

Note that year apparently only takes on two possible values in this dataset: 1999 or 2008. This makes
the scatterplot rather degenerate. So we prefer to treat year as categorical (indeed, binary) and create
side-by-side boxplots with faceting:
mpg %>%

mutate(year=as.factor(year)) %>%
pivot_longer(names_to="MPG_type",

values_to="fuel_efficiency",
cols=c(cty, hwy)) %>%

ggplot(aes(x=year, y=fuel_efficiency)) +
geom_boxplot() +
facet_wrap(~MPG_type)

4

cty hwy

1999 2008 1999 2008

10

20

30

40

year

fu
el

_e
ffi

ci
en

cy

Simple linear regression model
The linear trend seen in the scatterplot above justifies the use of a simple linear regression model:

y = β0 + β1 ∗ x+ e

Recall β0 (the “intercept”) and β1 (the “slope”) are unknown coefficients, and e represents random variation
(noise).

We use the function lm() to fit the desired linear regression. The function outputs a large named list,
consisting of a bunch of information pertinent to the model. Let’s store this list in the variable car_model:
car_model <- lm(formula=hwy ~ cty, data=mpg)

Note the formula hwy ~ cty, which refers to the column names in the mpg tibble. lm() knows to look in the
mpg tibble because we specified it in the data argument.

Let’s extract the coefficient estimates from the model object car_model:
coefs <- car_model$coefficients
coefs

(Intercept) cty
0.8920411 1.3374556

5

Visualizing the regression line
With the slope and intercept of the regression line, we can visualize it on top of the scatterplot above using
geom_abline(), as in lecture.

However, this is such a popular visualization that ggplot2 has an even easier way to do it, via geom_smooth(),
that avoids you from explicitly needing to use lm() (the function calls lm() under the hood)
mpg %>%

ggplot(aes(x=cty, y=hwy)) +
geom_jitter() +
geom_smooth(method="lm") +
xlim(c(0, 35)) +
ylim(c(0, 50))

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 1 rows containing missing values (`geom_point()`).

0

10

20

30

40

50

0 10 20 30
cty

hw
y

Beautiful! The grey shading, visible near the top right of the plot, quantifies the uncertainty of the fit. If the
line fit less well, you’d see a much wider grey region.

2. How do we get rid of the grey shading from our plot?

Prediction
We can use predict() to predict the highway mpg of a car using our regression model.

It is best to pass predict() a data frame/tibble (with the same column names as the tibble used in fitting
the model). This is true even if you only want a single prediction.

6

For instance, let’s say we want to predict the highway mpg of a car getting 20 mpg in the city. We start with
a single 1x1 data frame:
new_car <- data.frame(cty=20)
new_car

cty
1 20

Then we pass this data frame into the newdata argument of predict() to get our prediction:
predict(object=car_model, newdata=new_car)

1
27.64115

We can verify this prediction manually using the slope and intercept stored in coefs above:
coefs[1] + 20*coefs[2]

(Intercept)
27.64115

Of course, we can also get multiple predictions simultaneously:
new_cars <- data.frame(cty=c(20, 15, 32, 19.6))
new_cars

cty
1 20.0
2 15.0
3 32.0
4 19.6
predict(car_model, newdata=new_cars)

1 2 3 4
27.64115 20.95388 43.69062 27.10617

If we don’t specify the newdata argument to predict(), we get all the predictions on the original observations
used to fit the model:
mpg %>%

mutate(predicted_hwy = predict(object=car_model)) %>%
dplyr::select(cty, hwy, predicted_hwy)

A tibble: 234 x 3
cty hwy predicted_hwy
<int> <int> <dbl>
1 18 29 25.0
2 21 29 29.0
3 20 31 27.6
4 21 30 29.0
5 16 26 22.3
6 18 26 25.0
7 18 27 25.0
8 18 26 25.0
9 16 25 22.3
10 20 28 27.6
i 224 more rows

7

One thing we might notice is that our regression model will predict a car with 0 cty mpg actually has 0.892
hwy mpg (thanks to the nonzero intercept).

In this setting, we likely want to predict a car getting 0 city mpg to get 0 highway mpg, i.e. we want our
regression line to go through (0, 0). It turns out you can force your regression line to go through 0, i.e. force
the intercept to be 0. We can do this by adding a 0+ on the right side of the formula:
mpg_fit_no_intercept <- lm(hwy ~ 0+cty, data=mpg)
mpg_fit_no_intercept$coefficients

cty
1.38721

There’s no general statistical guidance for when this should be done. Whether or not to include an intercept
in your linear regression model depends on whether it is scientifically correct to predict exactly 0 for an x
value of 0.

3. Overlay both regression lines — with and without intercept — on the scatterplot above where we
demonstrated geom_smooth().

4. How much did the prediction for a car getting 20 city mpg change from the with-intercept model to the
no-intercept model?

Binary predictors
We now fit a linear regression with a binary predictor. In particular, let’s try to predict highway mileage
depending on whether the car is 4 wheel drive or 2 wheel drive.

Front-wheel and rear-wheel drive are both forms of 2 wheel drive. Thus, we can create a binary variable
drv_binary that equals “two” when drv is f or r, and “four” when drv is “4” (see the help menu for mpg
and ifelse()):
mpg_2 <- mpg %>%

mutate(drv_binary=ifelse(drv=="4", "four", "two")) %>%
select(hwy, drv_binary)

head(mpg_2)

A tibble: 6 x 2
hwy drv_binary
<int> <chr>
1 29 two
2 29 two
3 31 two
4 30 two
5 26 two
6 26 two

Note that I made the values of drv_binary “two” and “four” instead of 2 and 4 so that lm() recognizes
drv_binary as categorical, rather than quantitative. You could’ve also used the numerical versions, and
then used as.character() or as.factor() to convert the type of the column. Alternatively you could’ve
specified values “2” and “4” (as opposed to 2 and 4).
binary_model <- lm(hwy ~ drv_binary, data=mpg_2)
binary_model$coefficients

(Intercept) drv_binarytwo
19.174757 7.619136

8

As explained in lecture, by default “four” is the reference level (the one corresponding to “x=0”), since it comes
before “two” alphabetically. Hence the prediction for a 4-wheel drive car is 19.175, and 19.175+7.619=26.794
for a 2-wheel drive car.

We could’ve re-ordered the factor levels as follows:
mpg_2$drv_binary <- fct_relevel(mpg_2$drv_binary, "two", "four")

Since we put “two” as the first level in fct_relevel(), it will now be the reference level.
binary_model <- lm(hwy ~ drv_binary, data=mpg_2)
binary_model$coef

(Intercept) drv_binaryfour
26.793893 -7.619136

Note that re-leveling a factor does not change any of the predictions (it would be concerning if it did).

If you didn’t know anything about linear regression, a reasonable way to get a hwy mpg prediction based on
whether a car is 2 wheel drive or 4 wheel drive would be to simply take the average hwy mpg of all cars in
each category:
mpg_2 %>%

group_by(drv_binary) %>%
summarise(hwy_mean = mean(hwy))

A tibble: 2 x 2
drv_binary hwy_mean
<fct> <dbl>
1 two 26.8
2 four 19.2

Whoa! We get the exact same predictions! It turns out that you can show mathematically this is not a
coincidence. That is, simple linear regression with a binary predictor yields predictions corresponding to the
average dependent variable value for each of the two possible predictor values.

5. Create a binary predictor trans_type that is either auto or manual based on the first few characters in
the existing trans column. Then fit a simple linear regression to predict hwy from trans_type. Hint:
consider the substr() function.

Model diagnostics: residual plots
Above, we loosely looked at the scatterplot and “eye-balled” a linear trend to justify the use of a linear
regression.

A better, more principled visual diagnostic is to examine a residual plot.

The residuals from a linear regression fit are, by definition, the actual y values minus the y values predicted
by the regression line. For example, our regression model predicts that a car with 20 cty mpg should have
0.892+1.337*20 = 27.632 hwy mpg. If the car actually got 31 hwy mpg, the residual for that car would be
31-27.632 = 3.368.

For a linear regression model to be justified, the residuals should show no discernible pattern or trend above
or below zero.

A useful way to check this visually is to call plot() on the lm() object. You will get a series of 4 different
plots. The first one plots “Residuals vs Fitted”, which is a scatterplot of the the residuals on the y-axis versus
the regression line predictions on the x axis.

These points should look randomly scattered about 0. For the car_model regression above, it seems that
there are some patterns in the residuals (e.g. the residuals tend to decrease as the fitted value increases from

9

about 20 to 35), indicating some violation of the assumptions of a linear regression model. We’ll look at more
complex models to address this next class.
plot(car_model)

15 20 25 30 35 40 45

−
6

−
4

−
2

0
2

4

Fitted values

R
es

id
ua

ls

lm(hwy ~ cty)

Residuals vs Fitted

100

1215

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(hwy ~ cty)

Q−Q Residuals

100

12 15

10

15 20 25 30 35 40 45

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(hwy ~ cty)

Scale−Location
100

1215

0.00 0.02 0.04 0.06 0.08

−
3

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(hwy ~ cty)

Cook's distance
0.5

Residuals vs Leverage

222

100

107

11

	Exploratory analysis
	Simple linear regression model
	Visualizing the regression line
	Prediction
	Binary predictors
	Model diagnostics: residual plots

