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Predictive accuracy

Suppose we have a predictive model like (multiple) linear regression,
polynomial regression, or locally weighted regression. How do we
know which to use for prediction?

A common metric for predictive accuracy when the outcome variable
is quantitative and continuous, like in linear regression, is the mean
squared error (MSE).

As the name suggests, MSE is the average of the squared
differences (“errors”) between the actual data values and the
predicted data values. Lower MSE is better.



In-sample vs. out-of-sample error

In-sample error refers to the error for a model in predicting the
outcome variable in sample, meaning for the data used to fit the
model.

By contrast, out-of-sample error is the error for the model when
used to predict the outcome variable in new data that was NOT
used to fit the model.



In-sample vs. out-of-sample error

Recall that in linear regression, a residual refers to the difference
between the outcome variable and the corresponding based on the
predictor variable(s). The OLS algorithm seeks to minimize the sum
of the squared residuals on the data it is fit to.

Thus, the in-sample MSE for a linear regression model is simply the
mean squared residual.

Minimizing the sum of squared residuals is the same as minimizing
their mean (just divide by n, the number of observations), so the
OLS algorithm in fact minimizes in-sample MSE.



In-sample vs. out-of-sample error

Does minimizing in-sample error necessarily correspond to
minimizing out-of-sample error? No!

It's very easy to come up with a model that has zero in-sample error.
If all the x values in your data are distinct, simply predict y to be
the actual value corresponding to each x, and predict 0 (or any
other arbitrary number) for any x not in your data.

As you might imagine, this model would not typically do well
out-of-sample. Out-of-sample error is what we really care about, if
we want to make good predictions.



Choosing between nested linear regression
models




Choosing between nested linear regression models

Suppose Alice fits a simple linear regression of y onto x3, while Bob
fits a multiple regression of y onto x; and x».

Then Alice models y ~ 89 + S1 - x1 while Bob models
y = Bo+ f1-x1+ B2 x.

We say Alice's model is nested within Bob’s model, because any
possible configuration (i.e. set of values for Sy and (1) of Alice's
model corresponds to a possible configuration of Bob's model. That
is, Bob can always end up with the same model as Alice (by setting

B2 = 0).



Nested models

Note that Bob’s more flexible model cannot have higher in-sample
error than Alice's model. This is because the OLS algorithm for
both models finds the model configuration that minimizes in-sample
error. But Bob can always choose the same Sy and 31 as Alice, and
set B2 = 0, to get the same in-sample error as Alice.

As we've seen, this doesn't mean Bob's model will have better
out-of-sample error (otherwise, we should always add as many
predictors as humanly possible!). In general, increased model
flexibility will make it more likely that your model fits the noise in
the data, rather than the actual “signal”. On the other hand, if your
model is not flexible enough, it may not capture the full “signal”.



Testing nested linear regression models

To help us decide between Alice and Bob's models, we can test the
following hypotheses, corresponding to Bob’s model, using the
linear regression t-test:

Ho:B>=0
Hi: B2 #0

There is a standard t-test (different from the ones in Lecture 9) that
can be used to generate p-values for these hypotheses.



Testing nested linear regression models

The p-value for the linear regression t-test can be found in the
output of the regression table from fitting Bob's model, in the row
corresponding to x». For instance, we consider the abalone data
and suppose y is Length, x; is Diameter, and x; is Height:

library(tidyverse)

library(moderndive)

abalone <- read_csv("abalone.csv")

model <- lm(Length-Diameter+Height, data=abalone)



Testing nested linear regression models

summary (model)

##

## Call:

## lm(formula = Length ~ Diameter + Height, data = abalone)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.096325 -0.010857 0.000186 0.010736 0.071136

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 0.037480  0.004587 8.171 8.91e-15 **x*
## Diameter 1.166147  0.025815 45.173 < 2e-16 *¥*

## Height 0.085380  0.064002  1.334 0.183

## -

## Signif. codes: 0 '#%x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.0191 on 297 degrees of freedom
## Multiple R-squared: 0.9767, Adjusted R-squared: 0.9765
## F-statistic: 6216 on 2 and 297 DF, p-value: < 2.2e-16

With a p value of 0.183, we fail to reject Hp, and select Alice's
model.



Anova F test

Now suppose Charlie adds a third predictor to Bob's model, (say x3
is Whole.wt), and we want to decide between Alice's model and
Charlie's model, ignoring Bob’s model. Then in the language of
Charlie's model we test the following hypotheses, which can be done
with the anova F test implemented by anova():

Ho: 2= p3=0
Hi: B2 #0or 33#0



Anova F test

alice_model <- Im(Length~Diameter, data=abalone)
charlie_model <- Im(Length-Diameter+Height+Whole.wt, data=abalone)
anova(alice_model, charlie_model)

## Analysis of Variance Table

##

## Model 1: Length ~ Diameter

## Model 2: Length ~ Diameter + Height + Whole.wt

## Res.Df RSS Df Sum of Sq F  PrOF)

## 1 298 0.10905

## 2 296 0.10492 2 0.0041275 5.822 0.003311 *x*

## -——

## Signif. codes: 0 'skk' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

With a p-value of 0.0033, we reject Hy and select Charlie’s model.



Anova F test

You could also use an Anova F-test to compare Alice’'s model with
Bob's model.

In that case it is equivalent to the linear regression t-test (gives the
same p-value):

bob_model <- lm(Length-Diameter+Height, data=abalone)
anova(alice_model, bob_model)

## Analysis of Variance Table

## Model 1: Length ~ Diameter

## Model 2: Length ~ Diameter + Height

##  Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 298 0.10905

## 2 297 0.10840 1 0.00064953 1.7796 0.1832



Estimating out-of-sample error



Estimating out-of-sample error

The hypothesis tests for the nested models above are specialized for
the case of linear regression and require lots of assumptions.

A more modern approach to model selection is to directly estimate
the out-of-sample error of candidate models, and then pick the
model with the lowest such error estimate.

The most basic model selection method is called data splitting. As
the name suggests, you simply split your data into a training set
and a test set. You fit your models on the training set, and
compute the MSE (or other error metric) based on the predictions
for the test set.



Cross validation

The idea of K-fold cross validation improves upon data splitting
by averaging the MSE estimated from K different data splits, each
of which holds out a different 1/K proportion of the full dataset as
the test set.

This reduces the noise in the error estimates, i.e. by making them
less prone to the randomness in the training/test set split.



K-fold cross validation

Split your data at random into K roughly equally sized chunks,
or “folds”

Treat the first fold as the test set and the other folds as the
training set. Compute the out-of-sample errors from fitting
your models on the training set and evaluating their errors on
the test set

Repeat step 2 for all other folds, so that you have a total of K
estimates of out-of-sample error for each model. Each time,
you select a different fold as the test set, and the other K — 1
folds as the training set.

Average the K error estimates for each value to get a single
estimate.



Model selection

Once you have the cross-validation error from a suite of models of
interest, it is principled (and common practice) to simply pick the
model with the lowest cross-validation error.



Prediction vs. inference



Prediction vs. inference

These days, there are many fancy machine learning models (neural
networks, random forests, etc.) that have surprisingly good
predictive accuracy on a wide range of problems.

These models often have lots of parameters (e.g. span in locally
weighted regression) that are typically chosen using cross-validation
or something similar.

However, these models tend to be “black-box”, with no obvious way
of illuminating the overall structure of the model.



Prediction vs. inference

Prediction is concerned with accurately forecasting unseen data.

Inference is concerned with understanding the overall structure and
patterns in your data.



Black-box prediction

Self-driving car algorithms: High predictive accuracy is very
important, don't want to sacrifice that for inference.

Medical settings (who benefits most from a drug?): Inference may
be more important to help illuminate scientific understanding



Statistics vs. ML

Traditionally, statistics has focused more on inference, and machine
learning more on prediction.

Today, the lines are becoming ever more blurred. Take courses in
both statistics and machine learning to get the most complete
understanding of how to do good data analysis!
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