
Lecture 2: Data frames, functions, packages, and
the tidyverse

Stats 32: Introduction to R for Undergraduates

Harrison Li

April 4, 2024

Agenda

1 Data frames

2 Functions

3 Packages

4 The tidyverse

Reading: Sections 1.3, 4.2, 4.4

Data frames

Data frames

Recall a data frame is a 2-D array of named columns, where each
column is a vector.

Under the hood, a data frame is a named list, whose elements are
the columns of the data frame (which are themselves vectors).

Data frames

The built-in iris data frame gives measurements for 50 flowers
from each of 3 different species of irises. We can view the first 6
rows of iris using head():

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

There are 5 named columns. What are their names and data types?

Data frame indexing

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

One way to index into a data frame is to treat it as a matrix:
iris[4,2]

[1] 3.1

Data frame indexing

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Alternatively, we recall that data frames are named lists, and use the
list and vector indexing syntax from Lecture 1:
a_vector <- iris$Sepal.Width
a_vector[4]

[1] 3.1

Functions

Functions

Recall that in math, a function takes one or more inputs and
returns an output:

Functions

Similarly, in programming, a function takes in some inputs (formally
called arguments in R), runs some code based on those inputs, and
returns an output (or value).

The main reason to use a function is to avoid having to copy and
paste similar code multiple times to execute a common task many
times.

To use a function with specific inputs is to call it.

Functions

For example, suppose we want to compute the average of numbers
in a vector.

R has a built in function, mean(), that does this for you, taking in a
single argument (the vector), and spitting out the mean:
v <- c(3, -1, -1, 1)
mean(v)

[1] 0.5

The help page

The R help page for a built-in function can be reached by typing a
question mark followed by the name of the function, e.g. ?mean:

The help page

The help page provides the following:

A brief description of what the function does
The list of arguments that the function takes in
Details about how the function computes the value
(Usually) several examples

Write your own function

Here’s an example of a user-defined function:
myFunction <- function(myFirstArg, mySecondArg){

myVariable <- myFirstArg+mySecondArg
return(myVariable)

}

The above code defines a function called myFunction

Note myFunction is an object, just like the simpler objects we
saw in Lecture 1.
myFunction has two arguments: myFirstArg and
mySecondArg. Functions can have any number of arguments.
The function defines a new variable called myVariable as the
sum of the two arguments.
myFunction returns myVariable as its value.

Default arguments

Functions can have defaults for any or all arguments, so that you
can (optionally) omit those arguments in a function call.

We redefine myFunction so that the second argument,
mySecondArg, has a default value of 2:
myFunction <- function(myFirstArg, mySecondArg=2){

myVariable <- myFirstArg+mySecondArg
return(myVariable)

}

Default arguments

myFunction(1, 3)

[1] 4

myFunction(1)

[1] 3

Named arguments

All function arguments have names. For myFunction(), the
argument names are myFirstArg and mySecondArg.

When calling a function, if you don’t specify the argument names
then R will just assume the arguments correspond to the arguments
in the function definition, in order.

For clarity, it’s best practice to explicitly specify the argument
names. In fact, this is necessary if you have arguments with defaults
sandwiched between arguments that don’t have defaults:

Named arguments

myThreeArgFunction <- function(x, y=2, z){
return(x+y+z)

}
myThreeArgFunction(x=2, z=1)

[1] 5

Trying to run myThreeArgFunction(2, 1) will raise an error. R
will complain you haven’t specified z.

Packages

Packages

A package is a collection of functions and/or data written by
somebody in the R community and made freely available (yay open
source) to make some tasks easier.

There are over 20,000 packages available
(https://cran.r-project.org/web/packages/?) and thus they are not
all loaded into R by default! Instead, they must be installed first.

https://cran.r-project.org/web/packages/?

Installing packages

To install a package, simply use the install.packages() function
built into R and follow the instructions. You only need to install a
package once (on each machine). This will place its contents onto
your computer’s hard drive.
install.packages("earth")

Loading packages

In order to use any functions or data from a package, you must first
load it by calling the library() function.
library(earth)

Loading required package: Formula

Loading required package: plotmo

Loading required package: plotrix

Loading required package: TeachingDemos

Note there are no quotes around the name of the package when
calling library().

The tidyverse

The tidyverse

The tidyverse is a large collection of packages, primarily developed
by Hadley Wickham. These packages are extremely popular due to
their ability to facilitate data wrangling and visualization in a
powerful and consistent way.

Although the tidyverse is not a single package, you can install and
load it as if it were, using install.packages("tidyverse") and
library(tidyverse), respectively.

Tibbles

A tibble is a special type of data frame which only exists in the
tidyverse. Indeed, it is a data frame under the hood, but has certain
behaviors that tend to make tibbles a bit more pleasant to work
with than ordinary data frames. For more information, see
https://r4ds.had.co.nz/tibbles.html.

https://r4ds.had.co.nz/tibbles.html

Tidy data

Hadley Wickham established the following 3 principles for “tidy”
data:

1 Each variable forms a column
2 Each observation forms a row
3 Each type of observational unit forms a table

Here the term “variable” is used in the scientific sense, not in the
sense of an R variable.

Tidy data

Here’s an example of non-tidy data:
library(tidyverse)

dat <- tibble(Date=c("2024-03-31", "2024-04-01"),
SFO_high_temp=c("64", "70"),
SJC_high_temp=c("68", "73"))

dat

A tibble: 2 x 3
Date SFO_high_temp SJC_high_temp
<chr> <chr> <chr>
1 2024-03-31 64 68
2 2024-04-01 70 73

The problem is that we have one variable, the high temperature,
split across 2 columns. People often describe such data as wide.

Tidy data

Here’s the same data in tidy format:

tidy_dat <- tibble(Data=c("2022-03-31", "2022-04-01", "2022-03-31", "2022-04-01"),
Airport=c("SFO", "SFO", "SJC", "SJC"),
High_temp=c("64", "70", "68", "73"))

tidy_dat

A tibble: 4 x 3
Data Airport High_temp
<chr> <chr> <chr>
1 2022-03-31 SFO 64
2 2022-04-01 SFO 70
3 2022-03-31 SJC 68
4 2022-04-01 SJC 73

Tidy data

We can automatically convert from “wide” to “tidy” format using
pivot_longer() from the tidyr package in the tidyverse:

auto_tidy_dat <- pivot_longer(data=dat,
names_to="Airport",
values_to="High_temp",
cols=c("SFO_high_temp", "SJC_high_temp"))

auto_tidy_dat

A tibble: 4 x 3
Date Airport High_temp
<chr> <chr> <chr>
1 2024-03-31 SFO_high_temp 64
2 2024-03-31 SJC_high_temp 68
3 2024-04-01 SFO_high_temp 70
4 2024-04-01 SJC_high_temp 73

Conversely, you can use pivot_wider() to convert from “tidy” to
“wide” format.

Look at the help page for details!

	Data frames
	Functions
	Packages
	The tidyverse

