
STATS 116: Final exam

Saturday, August 19, 2023 from 8:30 am to 11:30 am PDT, Hewlett 102

Name

SUNET ID

There are 8 problems on this examination, worth a total of 100 points. The point value of each problem is

given below. Subparts within a problem may not carry equal weight. You are not expected to completely

solve all of the problems within the time limit, so do your best.

This examination is closed book, with the exception of two standard size (8.5 inch by 11 inch) sheets

of paper which may contain any information placed on it prior to the start of the examination. As per

the Honor Code and syllabus, any collaboration with other students or any other individuals is strictly

prohibited, as is the use of electronic devices during the examination (other than to check the time).

If a problem subpart depends on the answer to a previous subpart, you may receive full credit for this

subpart without solving the previous subpart by expressing your answer in terms of the answer to the

previous subpart. You may use the back page of each problem if you need more space; please indicate this

on the main page with the problem if you do so, to reduce the probability that it is missed during grading.

Unless you are explicitly asked to simplify, you may leave your answer in terms of binomial coefficients

or arithmetic expressions (but not sums or integrals, unless otherwise stated). Even if you are asked to

simplify, you will receive most of the credit with a correct answer that you are unable to simplify either

algebraically or via a “story.” Good luck!

Problem 1 out of 12 Problem 5 out of 12

Problem 2 out of 16 Problem 6 out of 12

Problem 3 out of 12 Problem 7 out of 12

Problem 4 out of 12 Problem 8 out of 12

Total out of 100
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Problem 1

Let X, Y , and Z be i.i.d. continuous random variables with P (X > 0) = 1. Write the most appropriate of

≤, ≥, =, or ? in each blank (where “?” means that no relation holds in general). Justification determines

most of the credit in each part.

(a) E
(

X
X+Y+Z

)
1/3

Answer: = . Since (X,Y, Z) are i.i.d., they are exchangeable. Thus (X,Y, Z), (Y,Z,X), and

(Z,X, Y ) have the same (joint) distribution. Applying the function g(x, y, z) = x/(x + y + z) to

each then shows that X/(X + Y +Z), Y/(X + Y +Z), and Z/(X + Y +Z) have the same distribu-

tion, hence the same expectation. But by linearity

E
(

X

X + Y + Z

)
+ E

(
Y

X + Y + Z

)
+ E

(
Z

X + Y + Z

)
= E

(
X + Y + Z

X + Y + Z

)
= 1

(b) E
(

X
Y+Z

)
1/2

Answer: ≥ . Note X and 1/(Y + Z) are independent, hence uncorrelated. Then by Jensen

E
(

X

Y + Z

)
= E(X)E

(
1

Y + Z

)
≥ E(X)

E(Y + Z)
=

E(X)

2E(X)
= 1/2

(c) P (X + Y ≥ 2) E(X2)

Answer: ≤ . We have

P (X + Y ≥ 2) = P ((X + Y )2 ≥ 4) ≤ E[(X + Y )2]

4

by Markov’s inequality. But

E[(X + Y )2] = E[X2] + E[2XY ] + E[Y 2] by linearity

= E[X2] + 2(E[X])2 + E[X2] since X, Y are i.i.d.

≤ 4E[X2] since (E[X])2 ≤ E[X2] by Jensen

(d) P (X + Y ≤ 2) (P (X ≤ 1))2

Answer: ≥ . Note X ≤ 1 and Y ≤ 1 implies X + Y ≤ 2. Hence

P (X + Y ≤ 2) ≥ P (X ≤ 1, Y ≤ 1) = P (X ≤ 1)P (Y ≤ 1) = (P (X ≤ 1))2

where the last two inequalities use the fact that X and Y are i.i.d.
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Problem 2

The Laplace distribution with parameter b > 0 is a continuous distribution with PDF

f(x) =
1

2b
exp

(
−|x|
b

)
, x ∈ R

Suppose X1, . . . , X900 are i.i.d. Laplace(b) random variables for some b > 0.

(a) Show that |X1| ∼ Expo(1/b).

Let Y = |X1|. For each y > 0 we have

P (|Y | ≤ y) = P (−y ≤ X1 ≤ y)

=
1

2b

∫ y

−y
exp

(
−|x|
b

)
dx

=
1

b

∫ y

0
exp

(
−x
b

)
dx

=
1

b

[
−b exp

(
−x
b

)] ∣∣∣x=y
x=0

= 1− exp
(
−y
b

)
Thus the PDF of Y is given by fY (y) = 1

b exp
(
−y
b

)
for all y > 0, which matches the Expo(1/b) PDF.

(b) Compute Var(X1) (in terms of b). Simplify.

Note the PDF is even (f(x) = f(−x)) so E(X1) = 0. Hence using part (a) and the known mean and

variance of the Expo(b) distribution, we conclude

Var(X1) = E(X2
1 ) = E(|X1|2) = Var(|X1|) + (E(|X1|))2 = 2b2
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(c) If b = 1, give as accurate an approximation as you can of the probability that no more than 420 of the

Xi are outside [− log(2), log(2)] in terms of e and/or the standard normal CDF Φ.

The probability each Xi is outside [− log(2), log(2)] is P (|Xi| ≥ log(2)) = exp(− log(2)) = 1/2

since |Xi| ∼ Expo(1) by part (a). Let N be the number of Xi outside [− log(2), log(2)]; we have

N ∼ Bin(900, 1/2). By the Normal approximation of the Binomial via the CLT, we know N is

approximately N (450, 225). Including the continuity correction, for Z ∼ N (0, 1)

P (N ≤ 420) ≈ P (−0.5 ≤ 15Z + 450 ≤ 420.5) = P (−450.5/15 ≤ Z ≤ −29.5/15)

= Φ

(
−29.5

15

)
− Φ

(
−450.5

15

)
The second term is not necessary for the approximation since it is so small.

(d) If b = 1, give as accurate an approximation as you can of the probability that at least 2 of the Xi are

outside [−6, 6] in terms of e and/or the standard normal CDF Φ.

The probability each Xi is outside [−6, 6] is P (|Xi| ≥ 6) = exp(−6) since |Xi| ∼ Expo(1) by part (a).

Since this is a rare event, a Poisson approximation is more accurate than a Normal approximation.

That is, with N now the number of Xi outside [−6, 6], we have N is approximately Pois(900·exp(−6)).

Then the desired probability is

P (N ≥ 2) = 1− P (N = 0)− P (N = 1) ≈ 1− (1 + 900 exp(−6)) exp(−900 exp(−6))

by the Poisson PMF.
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Problem 3

From his extensive studies, Kevin knows that he has three pills that, when ingested by any rat, will each

cure memorylessness in that rat with probabilities 0.5, 0.3, and 0.1, respectively.

(a) Because Kevin himself suffers from memorylessness, he has lost track of which pill is which, and so

simply picks one pill at random to give to his first rat. Given that the first rat is cured, what is the

probability the second rat, which is given one of the two remaining pills at random, receives the least

effective pill?

Let G be the event the first rat is cured, and let Ai, Bi, Ci be the events that the i-th rat got

the pills with effectiveness probabilities 0.5, 0.3, and 0.1, respectively, which we label A, B, and C,

respectively. By Bayes’ rule and LOTP we compute

P (A1 | G) =
P (G | A1)P (A1)

P (G | A1)P (A1) + P (G | B1)P (B1) + P (G | C1)P (C1)
=

0.5 · 1/3
0.5 · 1/3 + 0.3 · 1/3 + 0.1 · 1/3

=
5

9

P (B1 | G) =
P (G | B1)P (B1)

P (G)
=

0.3 · 1/3
(0.5 + 0.3 + 0.1)(1/3)

=
1

3

P (C1 | G) = 1− P (A1 | G)− P (B1 | G) =
1

9

Now by LOTP with extra conditioning

P (C2 | G) = P (C2 | A1, G)P (A1 | G) + P (C2 | B1, G)P (B1 | G) + P (C2 | C1, G)P (C1 | G)

=
1

2
· 5

9
+

1

2
· 1

3
+ 0 · 1

9

=
4

9

(b) Kevin’s third rat gets the last pill. What is the unconditional mean and variance of the number of

rats (out of 3) that are cured (i.e. do not condition on the event that the first rat is cured, as in part

(a))?

Let IA, IB, and IC be the indicator r.v.’s for the events that the rats receiving pills A, B, and C,

respectively, are cured. The number of rats that are cured can be written as IA + IB + IC , and so by

linearity

E(IA + IB + IC) = E(IA) + E(IB) + E(IC) = 0.5 + 0.3 + 0.1 = 0.9

Next note IA, IB, and IC are independent, so

Var(IA + IB + IC) = Var(IA) + Var(IB) + Var(IC) = 0.5(1− 0.5) + 0.3(1− 0.3) + 0.1(1− 0.1) = 0.55
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Problem 4

Kerrie the Archer throws a dart at a uniformly random point in the unit circle (the circle with radius 1

centered at (0,0) in the coordinate plane).

(a) Let R be the distance from the point where the dart lands to the origin. Find E(R) and Var(R). Hint:

You might consider starting by deriving the CDF of R.

Let (X,Y ) be the coordinates of the point where the dart lands. Then R =
√
X2 + Y 2 and one could

proceed via multivariate LOTUS as fXY (x, y) = 1/π for (x, y) in the unit circle. Alternatively, one

could use the fact that for all B ⊆ R2 contained in the unit circle, P ((X,Y ) ∈ B) = |B|
π since (X,Y )

are uniform on the unit circle, which has area π. For each 0 ≤ r ≤ 1, the event R ≤ r is equivalent

to (X,Y ) lying in the circle of radius r centered at the origin, which has area πr2 . Thus

P (R ≤ r) =
πr2

π
= r2, 0 ≤ r ≤ 1

so the PDF of R is fR(r) = 2r for r ∈ (0, 1). Then

E(R) =

∫ 1

0
rfR(r)dr =

∫ 1

0
2r2dr =

2

3

E(R2) =

∫ 1

0
r2fR(r)dr =∈10 2r3dr =

1

2

Var(R) = E(R2)− (E(R))2 =
1

18

(b) Now suppose Kerrie throws another dart uniformly at random on the circle, independent of the pre-

vious dart. Show that on average, the two darts are no more than 1 unit apart. Hint: It may be

helpful to first compute the expected squared distance between the darts.

Let (X1, Y1) and (X2, Y2) be the coordinates of the two darts and D =
√

(X2 −X1)2 + (Y2 − Y1)2

be the distance between the darts. We first compute

E[D2] = E[(X2 −X1)
2 + (Y2 − Y1)2]

= E(X2
1 + Y 2

1 ) + E(X2
2 + Y 2

2 )− 2E(X1X2)− 2E(Y1Y2)

= 2E(R2)

= 1 since E(R2) = 1 as computed above

where the third equality uses the fact that as X1 and X2 are i.i.d. mean 0 — and same with Y1 and

Y2, by symmetry. By Jensen we conclude (E(D))2 ≤ E(D2) = 1, as desired.
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Problem 5

Jimmy is playing the game Ensemble Stars. His goal is to win a treasure chest. To do so, he can pull

a lever where each pull will win him the treasure chest with probability 0.01, independently of the other

pulls. Let X ∼ FS(0.01) be the number of pulls Jimmy needs to win the treasure chest.

(a) Show that X satisfies the following memoryless property: For all nonnegative integers t and s, we have

P (X > t+ s | X > t) = P (X > s)

Note that for any nonnegative integer t, the event X > t is equivalent to the event that the first t

pulls failed, which has probability 0.99t. Then using the definition of conditional probability we have

P (X > t+ s | X > t) =
P (X > t+ s,X > t)

P (X > t)
=
P (X > t+ s)

P (X > t)
=

0.99t+s

0.99t
= 0.99s = P (X > s)

for any nonnegative integers t, s.

(b) Now suppose Jimmy has a power-up that guarantees he will get the chest on the 300th pull if he hasn’t

received it already. With this power-up, what is the expected number of pulls Jimmy needs until he

gets the chest (including the pull where he receives the chest)?

We can let Y = min(X, 300) be the number of pulls Jimmy needs to get the chest with the power-up.

By LOTE we have

E(Y ) = E(Y | Y < 300)P (Y < 300) + 300P (Y = 300) = E(X | X < 300)P (X < 300) + 300P (X ≥ 300)

To solve for E(X | X < 300) we apply LOTE again to note

100 = E(X) = E(X | X < 300)P (X < 300) + E(X | X ≥ 300)P (X ≥ 300)

= E(X | X < 300)P (X < 300) + E(X | X > 299)P (X > 299)

= E(X | X < 300)P (X < 300) + (299 + E(X))P (X > 299)

= E(X | X < 300)P (X < 300) + 399(0.99)299

where the third equality uses the memoryless property from part (a) to note X − 299 | X > 299 ∼

FS(0.01). Thus we conclude

E(Y ) = 100− 399(0.99)299 + 300(0.99)299 = 100− 99(0.99)299
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Problem 6

Jessica wants to understand the distribution of income in a large city. She does this by attempting to

survey n people in the city, chosen at random. Unfortunately, not everyone likes reporting their income to

strangers so many of her observations are missing. Let Mi be the indicator r.v. of the event that the income

Yi of individual i = 1, . . . , n in Jessica’s sample is missing. Suppose that Jessica works at the national

bank and so she knows the bank account balance X1, . . . , Xn for all individuals she attempts to survey.

Further assume that P (Mi = 1 | Xi) = e(Xi) for some known “missingness propensity function” e with

e(X) ≤ 1 − δ with probability 1 for some δ > 0, and also that the triples (M1, X1, Y1), . . . , (Mn, Xn, Yn)

are i.i.d. with Mi is conditionally independent of Yi given Xi. Let µ = E(Y1) and σ2 = Var(Y1), both finite.

(a) Briefly explain in words what it means for Mi to be conditionally independent of Yi given Xi in the

context of this problem.

Given bank account balance, missingness is independent of income. That is, among within individ-

uals with the same bank account balance, those with higher income have the same missingness rates

as those with lower income.

(b) Let Ȳ = 1
n

∑n
i=1

Yi(1−Mi)
1−e(Xi)

. Explain why Ȳ can be computed using known quantities, and show that

E(Ȳ ) = µ.

e(Xi) is known and the term Yi(1 − Mi) is 0 for all missing observations (Mi = 1) and just the

observation Yi for all non-missing observations (Mi = 0). Thus Ȳ is a function of only known

quantities. We compute

E[Ȳ ] =
1

n

n∑
i=1

E
[
Yi(1−Mi)

1− e(Xi)

]
by linearity

=
1

n

n∑
i=1

E
[
E
[
Yi(1−Mi)

1− e(Xi)
| Xi

]]
by iterated expectation

=
1

n

n∑
i=1

E
[
(1− e(Xi))

−1E[(1−Mi) | Xi]E[Yi | Xi]
]

by Takeout and the cond. indep. assumption

=
1

n

n∑
i=1

E[E[Yi | Xi]] as E[1−Mi | Xi] = P (Mi = 0 | Xi) = 1− e(Xi)

= µ by iterated expectation again
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(c) Argue that Ȳ satisfies a weak law of large numbers as n gets large, i.e. that P (|Ȳ − µ| > ε) → 0 as

n→∞, for any ε > 0.

One solution is to simply note Ȳ is a sample average of the i.i.d. random variables Zi = Yi(1 −

Mi)/(1 − e(Xi)) which we know have finite mean by the previous part. Thus by the strong law of

large numbers, Ȳ converges to µ almost surely, which implies the weak law of large numbers as stated

in lecture. Note this argument does not require the knowledge that Var(Y ) <∞.

Alternatively, to apply the weak law of large numbers directly we need to show the Zi have finite

variance. With e(Xi) ≤ δ with probability 1, we know 1/(1− e(X1)) ≤ δ−1 with probability 1, so

Var(Z1) ≤ E(Z2
1 ) ≤ δ−2E(Y 2

1 (1−M1)
2) ≤ δ2E(Y 2

1 ) = δ2(σ2 + µ2) <∞
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Problem 7

Suppose Z1 and Z2 are i.i.d. Standard Normal random variables. Let X1 = Z1 and X2 = aZ1 +
√

1− a2Z2

for some a ∈ (0, 1).

(a) Compute the probability that X1 and X2 differ (in absolute value) by at least 1 in terms of Φ, the

standard normal CDF.

Note X1 −X2 = (1 − a)Z1 −
√

1− a2Z2 ∼ N (0, (1 − a)2 + (1 − a2)) = N (0, 2(1 − a)), by recalling

that the sum of independent Normals is Normal. Thus (X1 −X2)/(
√

2(1− a)) ∼ N (0, 1) and

P (|X1 −X2| ≥ 1) = P (X1 −X2 ≥ 1) + P (X1 −X2 ≤ −1)

= P

(
X1 −X2√

2(1− a)
≥ 1√

2(1− a)

)
+ P

(
X1 −X2√

2(1− a)
≤ − 1√

2(1− a)

)

= 2Φ

(
− 1√

2(1− a)

)

(b) Compute Cor(X1, X2).

We have

Cov(X1, X2) = Cov(Z1, aZ1 +
√

1− a2Z2) = aCov(Z1, Z1) = a

by bilinearity and independence of Z1, Z2 (which implies they are uncorrelated). With SD(X1) =

SD(X2) = 1 (note X2 ∼ N (0, 1)), we conclude Cor(X1, X2) = a as well.

(c) Find the joint PDF of (X1, X2), and conclude that X1 and X2 are exchangeable.

We derive the joint PDF of (X1, X2) via change of variables. Let g(z1, z2) = (z1, az1 +
√

1− a2z2) ≡

(x1, x2). Solving we get z1 = x1, z2 = (x2 − ax1)/
√

1− a2, so

∣∣∣ ∂(z1, z2)

∂(x1, x2)

∣∣∣ =

∣∣∣∣∣
 1 0

− a√
1−a2

1√
1−a2

 ∣∣∣∣∣ =
1√

1− a2
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Thus

fX1X2(x1, x2) = fZ1Z2(z1, z2)

∣∣∣∣∣ ∂(z1, z2)

∂(x1, x2)

∣∣∣∣∣
=

1

2π
√

1− a2
exp

(
−x1

2

)
exp

(
−(x2 − ax1)2

2(1− a2)

)
=

1

2π
√

1− a2
exp

(
−x

2
1 + x22 − 2ax1x2

2(1− a2)

)
Note fX1X2(x1, x2) = fX1X2(x2, x1), showing exchangeability.
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Problem 8

San Flan is a dangerous square-shaped city measuring 7 miles by 7 miles, divided into 142 = 196 equally

sized square neighborhoods, each measuring 0.5 miles by 0.5 miles. Suppose various crimes occur at

locations uniformly distributed within the boundaries of San Flan, independently of previous crimes, and

that the total number of crimes that occur on a given day in San Flan follows a Pois(100) distribution.

(a) What is the mean and standard deviation in the number of crimes that occur on the day in a particular

neighborhood, Catpatch?

Each crime independently has probability 1/196 of landing in Catpatch. Thus, by the chicken-

egg story, the number of crimes in Catpatch follows a Pois(100/196) distribution, so the mean is

100/196 = 25/49 and the standard deviation is
√

100/196 = 5/7 . Alternatively, you could use

iterated expectations and law of total variance, conditioning on the number of crimes N that oc-

curred in the city as a whole and noting that the number of crimes in Catpatch given N = n follows

a Bin(n, 1/196) distribution.

(b) On average, how many neighborhoods would we expect to record at least one crime?

Each neighborhood has probability 1− exp(−25/49) of recording at least one crime, by the Poisson

PMF. Creating an indicator r.v. for the event that each neighborhood recorded at least one crime,

we conclude the desired expectation is 196(1− exp(−25/49)) .

(c) What is the correlation between the number of crimes on the day in Catpatch and the total number

of crimes that occur in all of San Flan?

Let X be the number of crimes in Catpatch and Y be the number of crimes in San Flan outside

Catpatch. By the chicken-egg story, we know X and Y are independent, hence uncorrelated. Then

Cov(X,X + Y ) = Cov(X,X) = Var(X) = 25/49

and then

Cor(X,X + Y ) =
100/196

SD(X)SD(X + Y )
=

25/49

5/7 · 10
=

1

14

Alternatively, use iterated expectations to compute E[X(X + Y )] by conditioning on X + Y .
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Table of distributions

Below is some information about some named distribution families and the Gamma function that might

be useful. Note: below, the letter q denotes the quantity 1− p.
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