STATS 116: Homework 1
Due: Thursday, July 6, 2023 at 10:00 pm PDT on Gradescope

There are 7 problems on this assignment, each worth 8 points, although subparts within a problem may not
be equally weighted. Credit will be assigned primarily based on reasoning and work, not the final answer.
You do not need to simplify arithmetic expressions unless otherwise noted. While you may discuss the
problems on this assignment other students, you must write up your own solutions. As per the syllabus,
you may occasionally use the Internet or other public resources to clarify concepts with citation when this
information is used as part of your own solution to a homework problem. However, you may not search
for direct solutions to any problems assigned for homework or exams. For example, you can ask ChatGPT
to clarify a particular concept from lecture that may be related to a problem, but you cannot feed it any

part of a course assignment or a substantively similar version.

1. In the Powerball lottery, your goal is to match five distinct white balls chosen randomly from

{1,2,...,69} as well as a single “powerball” which can be any of {1,2,...,26}.

(a) What is the probability you hit the jackpot (all balls match exactly)?

There are a total of (659) choices for the white balls and 26 choices for the powerball, so 26 - (659)
total possible combinations, by the multiplication rule. Only 1 of these wins the jackpot, and all

combinations are equally likely to come up, so we can apply the naive definition of probability

1
—=o | This turns out to be 1 in 292,201,338.
26'(5)

to get

(b) What is the probability you match exactly three white balls but not the powerball?

There are still 26 - (659) possible combinations. We need to select exactly three of the five white
balls that come up, and therefore also exactly two of the 69 — 5 = 64 non-chosen white balls.
We also have 25 ways to select the non-powerball, giving us a total of (g) . (624) - 25 combinations

where exactly three white balls match and the powerball doesn’t match. The answer is then
(3) - (5) 25
3 2
69
26 - ( 5 )

by the naive definition.

2. Caroline is to divide seven students into three different groups labeled A, B, and C. How many ways

can she do so, such that groups A and B each have at least one student? Note that group C can



remain empty.

Let S be the collection of all arrangements, A; be the collection of arrangements where group A
has at least one student and A, be the collection of arrangements where group B has at least one

student. We want to find |A; N Asl; for this problem it will be easier to use complementary counting:
(A1 N Ag)°| = [AT U A3

By the multiplication rule, there are 27 arrangements where group A has no students (there are two
choices for each of the 7 students), and similarly 27 arrangements where group B has no students.
Thus |A§| = |A§| = 27. Furthermore, |A$ N AS| = 1, as the only arrangement in A§ N AS assigns all

students to group C. We conclude by inclusion-exclusion that
AT U AS| = |Af| + |A5| — [Af N A5 =27+ 27 — 1

With |S| = 37 by the multiplication rule, the final answer is |A; N Ag| = |S]| — |AS U AS| =

37— (27427 —1)|=[1932].

. (BH 1.37) A deck of cards is shuffled well. The cards are dealt one by one, until the first time an ace

appears.

(a) Find the probability that no kings, queens, or jacks appear before the first ace.

The 2’s through 10’s are irrelevant, so we can assume the deck consists of aces, kings, queens,
and jacks. The event of interest is that the first card is an ace. This has probability 1/4 since
the first card is equally likely to be any card.

(b) Find the probability that exactly one king, exactly one queen, and exactly one jack appear (in

any order) before the first ace.

Continue as in (a). The probability that the deck starts as KQJA is

4120 8

16! 1365
The KQJ could be in any order, so the desired probability is

3-8 16
—— = — ~0.0352
1365 455



Alternatively, note that there are 16 - 15 - 14 - 13 possibilities for the first 4 cards, of which

12 -84 -4 are favorable. So by the naive definition, the probability is

12.8-4-4

— 0. 2
16-15-14-13 0-035

4. (BH 1.40) There are n balls in a jar, labeled with the numbers 1,2,...,n. A total of k balls are

drawn, one by one with replacement, to obtain a sequence of numbers.

(a) What is the probability that the sequence obtained is strictly increasing?

There is a one-to-one correspondence between strictly increasing sequences a; < --- < ap and

subsets {a1,...,ax} of size k, so the probability is (Z) /n¥| by the naive definition.

(b) What is the probability that the sequence obtained is nondecreasing?

There is a one-to-one correspondence between nondecreasing sequences of length k and ways of

k—1
choosing k balls with replacement, so the probability is <n + f ) / n¥ |by the naive definition.

5. The “union bound” states that for any events Ay, ..., A, we must have
n
P (UL 4) < ZP(Az‘)
i=1
Note that the identity holds with n = oo, but you may assume for simplicity that n is finite.

(a) Let By = Ay, and for each i > 2 let B; = A; \ (B1U...UB;_1). Argue that U} ;A; = U]" | B;.
To do so, let A =U}_ | A; and B = U} B;. Then show that any outcome a € A must also lie in

B, and conversely any outcome b € B must also lie in A.

First fix an outcome a € A. Then a € A; for some i. Furthermore, either a € (B; U...U B;_1)
or A€ (ByU...UB;_1) In the former case, we have a € By, for some k € {1,...,i—1}; in the

latter case we have A € B;. This shows that in either case, a € B. Thus, we’ve shown A C B.

Conversely fix b € B, meaning b € B; for some i. But B; C A; by definition, hence b € A; C A.

This shows B C A, completing the proof.

(b) Show the union bound using the axioms of probability.

Note that By, ..., B, are disjoint by construction (for any i < j, B = A; U (ByU---UB; U

...cupBj_1) is contained in Bf). Hence by part (a), countable additivity, then monotonicity



(noting B; C A;), we have
P (UL Ai) =P (U B) =Y P(B;)) <Y P(4)

6. (BH 2.20) The Jack of Spades (with cider), Jack of Hearts (with tarts), Queen of Spades (with a
wink), and Queen of Hearts (without tarts) are taken from a deck of cards. These four cards are

shuffled, and then two are dealt.

(a) Find the probability that both of these two cards are queens, given that the first card dealt is a

queen.

Let @; be the event that the i-th card dealt is a queen, for ¢ = 1,2. Then P(Q;) = 1/2 since

the i-th card dealt is equally likely to be any of the cards. Also,

P(Q1NQ2) =P(Q1)P(Q2| Q1) =

As a check, note that by the naive definition of probability,

1 1
P(QiNQy) = 7 ==
Qe T

‘We conclude

PQINQ: | Q) = D0 — 10 [

(b) Find the probability that both are queens, given that at least one is a queen.

Continuing as in (a),

P(Q1NQ> | Q1UQ) = P@1NEQ2) _ P(Q1NQ2) 1/6

P(QiUQ2)  P(Qi)+P(Q2)—P(QiNQ2) 1/2+1/2-1/6
Another way to see this is to note that there are 6 possible 2-card hands, all equally likely,
of which 1 (the “double-jack pebble”) is eliminated by our conditioning; then by definition of

conditional probability, we are left with 5 “pebbles” of equal mass.

(¢) Find the probability that both are queens, given that one is the Queen of Hearts.

Let H; be the event that the i-th card dealt is a heart, for ¢ = 1,2. Then
PQNHINQ)+P(QiNQNH) 15+15
1
7+
4

PQUN @2 | (@10 H) U (@21 Hy) = Sl it Sh i = B

using the fact that 1 N H; and Q2 N Hy are disjoint. Alternatively, note that the conditioning

1lg
18

reduces the sample space of 2-card hands to 3 possibilities, which are equally likely, and 1 of

these 3 has both cards queens.



7. Harrison has two bags. Bag A contains 2 green marbles and 2 red marbles, while bag B contains 3
green marbles and 1 red marble. He chooses one bag at random without looking, and then starts

drawing marbles at random, without replacement, from the chosen bag.

(a) What is the probability that the first two marbles chosen are green?

Let A be the event that Bag A was chosen and G be the event that the first two marbles are
green. Note P(G | A) = 1/6 by the naive definition ((;1) = 6 total choices of two marbles out of
the four in bag A, of which 1 is green) while P(G | A°) = 1/2 (there are (g) = 3 choices of two
green marbles in bag B). Then by LOTP

P(G) = P(G | A)P(4) + P(G | A°)P(4°) = S

N | =
N =

+

| =
N =

(b) Given that the first two marbles chosen are green, what is the probability that Harrison chose

bag B?

Continuing the notation from (a), we have by Bayes’ rule

1.1
P(4]G) = P(G}LfG))P(A) =& 2o

So the probability Harrison chose bag B given the first two marbles are green is P(A° | G) =

1—P(A|G):.

(c) Now suppose we only saw that the first marble chosen was green. Given only this information,
what is the probability that Harrison chose bag B? Is your answer smaller than, greater than,

or the same as the answer to part (b)? Explain why this makes sense.

Let’s let G1 be the event that the first marble chosen is green. Repeating the calculation in the

previous parts, we have by Bayes’ rule and LOTP

plac| Gy = POLLAIPA) P(Gy | A)P(A°) _ 13 |3
! P(Gy) P(G1 | A)P(A) + P(Gy [A9)P(A°) — 1. 1131 7[5

This is smaller than the answer to part (b). This is intuitive as bag B has a greater proportion
of green marbles than bag A, so seeing additional green marbles should be stronger evidence in

favor of having picked bag B.

(d) Use conditional Bayes’ rule (i.e. apply Bayes’ rule conditional on the first marble being green)
to update the probability in part (c) to account for the additional information that the second

marble chosen was also green. Is your answer smaller than, greater than, or the same as the



answer to part (b)? Explain why this makes sense.

Let G2 be the event that the second marble chosen is green. Then by conditional Bayes’ rule

ol U
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and LOTP
P(Gy | A¢,G1)P(A° | Gy)
(Ga | A, G1)P(A¢ ’ G1) + P(G2 ’ A,G1)P(A ‘ G1) % .

P(A°| G2, Gy) = P
which matches the answer in part (b). We expect this to be the case due to the consistency of

multiple conditional probabilities; conditioning on two events (as we do in this part) is equivalent

to conditioning on their intersection (as we do in part (b)).



