
STATS 116: Practice final exam

Saturday, August 19, 2023 from 8:30 am to 11:30 am PDT, Hewlett 102

Name

SUNET ID

There are 9 problems on this examination, worth a total of 100 points. The point value of each problem is

given below. Subparts within a problem may not carry equal weight. You are not expected to completely

solve all of the problems within the time limit, so do your best.

This examination is closed book, with the exception of two standard size (8.5 inch by 11 inch) sheets

of paper which may contain any information placed on it prior to the start of the examination. As per

the Honor Code and syllabus, any collaboration with other students or any other individuals is strictly

prohibited, as is the use of electronic devices during the examination (other than to check the time).

If a problem subpart depends on the answer to a previous subpart, you may receive full credit for this

subpart without solving the previous subpart by expressing your answer in terms of the answer to the

previous subpart. You may use the back page of each problem if you need more space; please indicate this

on the main page with the problem if you do so, to reduce the probability that it is missed during grading.

Unless you are explicitly asked to simplify, you may leave your answer in terms of binomial coefficients or

arithmetic expressions (but not integrals, unless otherwise stated). Even if you are asked to simplify, you

will receive most of the credit with a correct answer that you are unable to simplify either algebraically or

via a “story.” Good luck!

Problem 1 out of 12 Problem 6 out of 12

Problem 2 out of 10 Problem 7 out of 12

Problem 3 out of 10 Problem 8 out of 10

Problem 4 out of 12 Problem 9 out of 10

Problem 5 out of 12 Total out of 100
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Problem 1

Let X, Y , Z ∼ N (0, 1) be i.i.d. As usual, let Φ be the N (0, 1) CDF. Write the most appropriate of ≤,

≥, =, or ? in each blank (where “?” means that no relation holds in general). It is not necessary on this

problem to justify your answers.

(a) P (X ≤ Y ≤ Z) 1/3

Answer: ≤ . By exchangeability, all 3! = 6 orderings of X, Y , and Z are equally likely (we do not

worry about ties since we are dealing with continuous r.v.’s) hence the LHS is actually 1/6.

(b) P (3X ≤ 4Y ) 1/2

Answer: = . Note 4Y − 3X ∼ N (0, 25), hence (4Y − 3X)/5 ∼ N (0, 1) and

P (3X ≤ 4Y ) = P (4Y − 3X ≥ 0) = P

(
4Y − 3X

5
≥ 0

)
= Φ(0) = 1/2

(c) P (3X ≤ 4Y + 1) Φ(0.25)

Answer: ≤ .

P (3X ≤ 4Y + 1) = P (4Y − 3X ≥ −1) = P

(
4Y − 3X

5
≥ −0.2

)
= 1− Φ(−0.2) = Φ(0.2) ≤ Φ(0.25)

(d) Var(|X|) Var(X)

Answer: ≤ . We have

Var(|X|) = E[X2]− (E[|X|])2 ≤ E[X2] = E[X2]− (E[X])2 = Var(X)

(we know it’s not an equality since |X| is strictly positive with probability 1, hence must have positive

expectation).

(e) E(X2 + eY + Φ(Z)) 2.5

Answer: ≥ . Note Φ(Z) ∼ Unif(0, 1) by universality of the uniform. Hence E(Φ(Z)) = 1/2. Then

by linearity and Jensen’s inequality (note g(y) = exp(y) is convex), we have

E(X2 + eY + Φ(Z)) = E(X2) + E[eY ] + E[Φ(Z)] = 1.5 + E[eY ] ≥ 1.5 + eE[Y ] = 2.5
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(f) E(log(X2 + Y 2 + Z2)) log(3)

Answer: ≤ . Note g(x) = log(x) is concave. Hence by Jensen’s inequality and linearity we have

E(log(X2 + Y 2 + Z2)) ≤ log(E(X2 + Y 2 + Z2)) = log(E(X2) + E(Y 2) + E(Z2)) = log(3)
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Problem 2

There are three boxes: a box containing two gold coins, a box containing two silver coins, and a box

containing one gold coin and one silver coin. You choose a random box and, without being able to see

inside the box, randomly take out one of the two coins from that box. The chosen coin turns out to be

gold.

(a) Given the above information, find the probability that the remaining coin in the chosen box is also gold.

Let G be the event the chosen coin is gold, BGG be the event that the chosen box has two gold coins,

and BGS be the event that the chosen box has one gold coin and one silver coin. Then by Bayes’

rule and LOTP, the desired probability is

P (BGG | G) =
P (G | BGG)P (BGG)

P (G | BGG)P (BGG) + P (G | BGS) + P (BGS)
=

1 · 13
1 · 13 + 1

2 ·
1
3

=
2

3

(b) For this part, instead of assuming that there is one box of each type, suppose that the contents of a

box are independent of the contents of the other boxes. Now for each box the probability is a for two

gold coins, b for two silver coins, and c for one gold coin and one silver coin, where a, b, c are positive

constants with a + b + c = 1. As before, you take a random coin from a randomly chosen box, and

this coin is gold. Given this information, find the probability that the remaining coin in the chosen

box is also gold.

Repeating the calculation from part (a) on this new probability space, we have

P (BGG | G) =
P (G | BGG)P (BGG)

P (G | BGG)P (BGG) + P (G | BGS)P (BGS)
=

1 · a
1 · a+ 1

2 · c
=

a

a+ c/2
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Problem 3

A fair, six-sided die is rolled repeatedly, until it lands 6 for the first time. Let N be the number of rolls

(so the Nth roll is a 6 and none of the previous rolls are 6’s).

(a) Find E(N) and E(N2). Simplify.

We have N ∼ FS(1/6). By the table of distributions we have E(N) = 1
1/6 = 6 . Then E(N2) =

Var(N) + (E(N))2 = 1−1/6
(1/6)2

+ 62 = 66 .

(b) Let X be the number of rolls that land 1. Find E(X|N) and E(X).

Let Ii be the indicator r.v. for the event that the i-th roll lands 1. Suppose N = n. Then by

symmetry, each of the rolls prior to the n-th roll is equally likely to be any number from 1 through

5. Hence E[Ii | N = n] = 1/5, i = 1, . . . , n− 1, while In = 0. With X = I1 + · · ·+ IN we have

E(X | N = n) = E(I1 + . . . In | N = n) =
1

5
)(n− 1)

Thus E(X | N) =
1

5
(N − 1) and by iterated expectations we have

E(X) = E[E(X | N)] = E
[

1

5
(N − 1)

]
=

1

5
E[N − 1] = 1

using the result from part (a).
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Problem 4

Fred wants to sell his car. He decides to sell it to the first person who offers at least $18,000 for it. The

offers are independent Exponential r.v.s, each with mean $12,000. Assume that he is able to keep collecting

offers until he obtains one that meets his criterion.

(a) Find the expected number of offers Fred will have, including the offer he accepts. Simplify.

Suppose X ∼ Expo(1/12000). Then X is the distribution of the dollar amount of each offer, so the

probability any given offer is at least 18,000

p := P (X ≥ 18000) =

∫ ∞
18000

fX(x)dx

=

∫ ∞
18000

1

12000
exp

(
− x

12000

)
dx

= lim
L→∞

[
− exp

(
− x

12000

)] ∣∣∣x=L

x=18000

= exp(−1.5)

Then the number of offers Fred needs to collect has a FS(p) distribution, so the mean is 1/ exp(−1.5) =

exp(1.5) .

(b) Find the expected amount of money that Fred will get for his car. Simplify.

Continuing the notation from part (a), we want E(X | X ≥ 18000). By memorylessness, we know

X − 18000 | X ≥ 18000 has the same distribution as the unconditional distribution of X. Thus

E[X − 18000 | X ≥ 18000] = E[X] = 12000, and hence E(X | X ≥ 18000) = 12000 + 18000 = 30000,

and the expected amount of money is $30000 .

(c) Now assume that, instead of waiting until he gets an offer of at least $18,000, Fred waits until he has

2 offers and then he accepts the larger of the 2 offers. Find the expected amount of money that he

will get for his car. Simplify.

Let X1, X2
i.i.d.∼ Expo(1) be the two offers. Since min(a, b) + max(a, b) = a+ b for any real numbers

a and b, we have

E[min(X1, X2) + max(X1, X2)] = E[X1 +X2] = 24000
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However, we know that min(X1, X2) ∼ Expo(2/12000), so E[min(X1, X2)] = 6000. Thus E[max(X1, X2)] =

24000− 6000 = 18000 by linearity, i.e. Fred can still expect to get $18000 for his car.
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Problem 5

Cassie enters a casino with X0 = 1 dollar and repeatedly plays the following game: with probability 1/3,

the amount of money she has increases by a factor of 3; with probability 2/3, the amount of money she

has decreases by a factor of 3. Let Xn be the amount of money she has after playing this game n times.

For example, X1 is 3X0 with probability 1/3 and is 3−1X0 with probability 2/3.

(a) Compute E(X1), E(X2) and, in general, E(Xn). Simplify. What happens to E(Xn) as n→∞?

We have E(X1) = 3 · (1/3) + (1/3) · (2/3) = 11/9 . In general, for each n > 1 we have

E(Xn | Xn−1 = x) = 3x · (1/3) + (x/3) · (2/3) = (11/9)x

Thus E(Xn | Xn−1) = (11/9)Xn−1, and by iterated expectations E(Xn) = E(E[Xn | Xn−1]) =

11
9 E[Xn−1]. This shows E(Xn) = (11/9)n. In particular E(X2) = (11/9)2 and E(Xn) → ∞ as

n→∞.

(b) Let Yn be the number of times out of the first n games that Cassie triples her money. What happens

to Yn/n with probability 1 as n→∞?

We have Yn ∼ Bin(n, 1/3). Representing Yn as the sum of n i.i.d. Bern(1/3) r.v.’s, by the (strong)

LLN we know Yn/n converges to 1/3 with probability 1 as n→∞.

(c) What happens to Xn with probability 1 as n→∞?

With Yn as in part (b), we can write

Xn = X0 · 3Yn(1/3)n−Yn = 32Yn−n

By part (b), we know 1
n(2Yn − n) = 2Yn

n − 1 converges almost surely to −1/3. Thus 2Yn − n goes to

−∞ as n→∞, so Xn goes to 0 almost surely as n→∞.
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Problem 6

A basketball player will shoot N ∼ Pois(λ) free throws in a game tomorrow. Let Xj be the indicator of

him making his j-th free throw, and X = X1 + · · · + XN be the total number of free throws he makes in

the game (so X = 0 if N = 0). To model our uncertainty about how good a free throw shooter he is, let

p ∼ Beta(a, b). Given p, the player has probability p of making a free throw and probability q = 1 − p of

missing it. Assume that X1, X2, . . . are conditionally independent given p, and that N is independent of

p,X1, X2, . . ..

(a) Find the conditional distribution of X given N , p.

By the story of the Binomial, we know X | N = n, p ∼ Bin(N, p) .

(b) Find the conditional distribution of X given p.

Fix an integer x ≥ 0. We have

P (X = x | p) =
∞∑
n=0

P (X = x | N = n, p)P (N = n | p) by generalized LOTP

=

∞∑
n=0

(
n

x

)
px(1− p)n−xP (N = n) by part (a) and independence of N , p

=
∞∑

n=x

(
n

x

)
px(1− p)n−x exp(−λ)

λn

n!

=

(
p

1− p

)x

· 1

x!

∞∑
n=x

1

(n− x)!
exp(−λ)(λ(1− p))n

=

(
p

1− p

)x

· 1

x!

∞∑
k=0

1

k!
exp(−λ)(λ(1− p))k+x

=
(λp)x

x!
exp(−λp)

Thus X | p ∼ Pois(λp) . Alternatively, recall the chicken-egg story.

(c) Find the conditional distribution of X given N , for the case a = b = 1.
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Fix an integer n ≥ 0 and x ∈ {1, . . . , n}. Note

P (X = x | N = n) =

∫ 1

0
P (X = x | N = n, p = r)fp(r)dr

=

∫ 1

0

(
n

x

)
rx(1− r)n−xdr

=

(
n

x

)
Γ(x+ 1)Γ(n− x+ 1)

Γ(n+ 2)
since the Beta(x+ 1, n− x+ 1) PDF integrates to 1

=
1

n+ 1
since Γ(a) = (a− 1)! for all positive integers a

Hence X | N ∼ DUnif({0, 1, . . . , N})

(d) Find the conditional distribution of p given X,N .

We have

fp(r | X = x,N = n) ∝ P (X = x | p = r,N = n)fp(r | N = n)

∝ rx(1− r)n−x · ra−1(1− r)b−1 since p and N are independent

∝ ra+x−1(1− r)b+n−x−1

By pattern matching, p | X,N ∼ Beta(a+X, b+N −X) .
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Problem 7

6. Let X, Y , Z be i.i.d. Expo(1) and W = X2.

(a) Find the CDF and the PDF of W . Be sure to specify the CDF and the PDF everywhere.

Since supp(X) = (0,∞) we have supp(W ) = (0,∞) as well. Hence for each w > 0 we have

FW (w) = P (W ≤ w) = P (X ≤
√
w) =

∫ √w
0

exp(−x)dx = 1− exp(−
√
w)

with FW (w) = 0 for w ≤ 0. Taking a derivative, we see

fW (w) =
1

2
√
w

exp(−
√
w), w > 0

(and fW (w) = 0 for w ≤ 0).

(b) Find E(XY Z | X > 1, Y > 4, Z > 10). Simplify.

Note that for each x > 1, y > 4, and z > 10 we have

P (X ≤ x, Y ≤ y, Z ≤ z | X > 1, Y > 4, Z > 10) =
P (1 < X ≤ x, 4 < Y ≤ y, 10 < Z ≤ z)

P (X > 1, Y > 4, Z > 10)

= P (X ≤ x | X > 1)P (Y ≤ y | Y > 4)P (Z ≤ z | Z > 10)

by independence of X, Y , Z. Thus X, Y , and Z are independent given the event A = {X > 1, Y >

4, Z > 10}, and

E(XY Z | A) = E(X | A)E(Y | A)E(Z | A)

By memorylessness, we know

1 = E(X−1 | A) = E(X−1 | X > 1) = E(Y−4 | A) = E(Y−4 | Y > 4) = E(Z−10 | A) = E(Z−10 | Z > 10)

Thus E(X | A) = 2, E(Y | A) = 5, and E(Z | A) = 11 and the answer is 110 .

(c) Find Var(X | X + Y ). Simplify.

Note that by the bank post-office story, we know X/(X + Y ) ∼ Unif(0, 1) independently of X + Y ,

so
1

(X + Y )2
·Var(X | X + Y ) = Var

(
X

X + Y
| X + Y

)
= Var

(
X

X + Y

)
= 1/12

Thus Var(X | X + Y ) =
(X + Y )2

12
.
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Problem 8

A group of n people are comparing their birthdays. Assume that their birthdays are independent of each

other. For simplicity, assume that a year has 360 days (rather than 365 or 366). For (a), assume that these

360 days are all equally likely as birthdays.

(a) Let X be the number of sets of three different people such that the three people in the set share the

same birthday as each other. Find E(X).

Let Ii, i = 1, . . . ,
(
n
3

)
be the indicator random variables that set i of three people share the same

birthday. Note E(Ii) = 360
3603

= 1/3602 by the naive definition (for a fixed ordering of the three people

in a given set, all 3603 triples of birthdays are equally likely). Since X =
∑(n3)

i=1 Ii, by linearity

E(X) =

(n3)∑
i=1

E[Ii] =

(
n
3

)
3602

(b) Now assume instead that the 360 days are not all equally likely as birthdays. A year consists of four

seasons (winter, spring, summer, fall), with exactly 90 days per season. The probabilities of being

born in winter, spring, summer, fall are 3/8, 1/8, 3/8, and 1/8, respectively. Within a season, the

90 days are equally likely as birthdays. Let n = 23 and c = 1
82·90 . Find a simple but accurate ap-

proximation for the probability that there is at least one pair of people who share the same birthday.

Your answer can be left in terms of c and e.

Each person independently has probability 3/(8·90) of being born on any particular winter or summer

day. Likewise, each person independently has probability 1/(8 · 90) of being born on any particular

spring or fall day. Thus, summing over all possible birthdays, the probability any two people share

a birthday is

p := (90 + 90) ·
(

3

8 · 90

)2

+ (90 + 90) ·
(

1

8 · 90

)2

= 20c

Now let Ii, i = 1, . . . ,
(
23
2

)
be the indicator that the i-th pair of individuals in the room has the same

birthday. By Poisson approximation, we know X =
∑(232 )

i=1 Ii has approximately a Pois(λ) distribution

where

λ =

(
23

2

)
· 20c = 5060c

Thus

P (X ≥ 1) = 1− P (X = 0) ≈ 1− exp(−5060c)
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Problem 9

Suppose we wish to approximate the following integral (denoted by b):

b =

∫ ∞
−∞

(−1)bxce−x
2/2dx,

where bxc is the greatest integer less than or equal to x (e.g., b3.14c = 3).

(a) Write down a function g(x) such that E(g(X)) = b for X ∼ N (0, 1) (your function should not be in

terms of b).

By LOTUS we want to choose g such that∫ ∞
−∞

g(x) · 1√
2π

exp(−x2/2)dx = b

This is satisfied by taking g(x) =
√

2π(−1)bxc .

(b) Write down a function h(u) such that E(h(U)) = b for U ∼ Unif(0, 1) (your function should not be in

terms of b, and can be in terms of the function g from (a) and the standard Normal CDF Φ).

By Universality of the Uniform, Φ−1(U) ∼ N (0, 1). Thus it suffices to take h(u) = g(Φ−1(u)) .

(c) Let X1, X2, . . . , Xn be i.i.d. N (0, 1) with n large, and let g be as in (a). What is the approximate

distribution of 1
n(g(X1) + · · · + g(Xn))? Simplify the parameters fully (in terms of b and n), and

justify your answer.

Since g(X1), . . . , g(Xn) are i.i.d., by the Central Limit Theorem we know their sample average X̄n =

1
n(g(X1) + · · ·+ g(Xn)) is approximately N (µn, σ

2
n) where

µn = E[g(X1)] = b, σ2n = Var(g(X1))/n = n−1(E[g(X1)
2]− (E[g(X1)])

2) = n−1(2π − b2)

13



Table of distributions

Below is some information about some named distribution families that might be useful. Note: below, the

letter q denotes the quantity 1− p.
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