
STATS 116: Homework 6

Due: Friday, August 11, 2023 at 10:00 pm PDT on Gradescope

There are 7 problems on this assignment, each worth 8 points, although subparts within a problem may not

be equally weighted. Credit will be assigned primarily based on reasoning and work, not the final answer.

You do not need to simplify arithmetic expressions unless otherwise noted. While you may discuss the

problems on this assignment other students, you must write up your own solutions. As per the syllabus,

you may occasionally use the Internet or other public resources to clarify concepts with citation when this

information is used as part of your own solution to a homework problem. However, you may not search

for direct solutions to any problems assigned for homework or exams. For example, you can ask ChatGPT

to clarify a particular concept from lecture that may be related to a problem, but you cannot feed it any

part of a course assignment or a substantively similar version.

1. (BH 7.48) Athletes compete one at a time at the high jump. Let Xj be how high the jth jumper

jumped, with X1, X2, . . . , i.i.d. with a continuous distribution. We say that the jth jumper sets a

record if Xj is greater than all of Xj−1, . . . , X1. Find the variance of the number of records among

the first n jumpers (as a sum). What happens to the variance as n→∞?

Let Ij be the indicator r.v. for the event the j-th jumper sets a record. By exchangeability, E(Ij) =

P (Ij = 1) = 1/j (as all of the first j jumps are equally likely to be the largest of those jumps, and

we don’t need to worry about ties since the Xj are continuous). Now we show that Ii is uncorrelated

with Ij for all i; j with i < j (in fact, all of the indicators are independent, though we don’t need to

show this). To see this, note all j! rankings of the first j jumpers are equally likely, so by the naive

definition

E[IiIj ] = P (Ii = Ij = 1) =

(
j−1
i

)
· (i− 1)! · (j − i− 1)!

j!
=

1

ij
= E[Ii]E[Ij ]

where the numerator corresponds to putting the best of the first j jumps in position j, picking any i

of the remaining jumps to fill positions 1 through i, putting them in any order with the largest one

in position i, and then putting j − i − 1 jumps in positions i + 1 through j − 1 in any order. The

variance of Ij is

Var(Ij) =
1

j
− 1

j2

since Ij ∼ Bern(1/j). Then by bilinearity of covariance and the covariance to variance formula, we

have

Var(I1 + · · ·+ In) = Cov(I1 + · · ·+ In, I1 + · · ·+ In) =

n∑
i=1

n∑
j=1

Cov(Ii, Ij) =

n∑
i=1

Var(Ii) =

n∑
i=1

1

i
− 1

i2
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This goes to infinity as n→∞ since
∑n

i=1
1
i diverges but

∑n
i=1

1
i2

converges.

2. Suppose X1 and X2 are i.i.d. standard Normal random variables.

(a) Find the PDF of X2
1 , and then use this to find the PDF of Z = X2

1 + X2
2 . Show that Z has a

Gamma distribution; specify the parameters.

Note we cannot use the change of variables formula to find the PDF of X2
1 , since g(x) = x2 is

not one-to-one. Thus we work with the CDF directly. Let Y = X2
1 ; then for all y > 0 we have

FY (y) = P (Y ≤ y) = P (−√y ≤ X1 ≤
√
y) = Φ(

√
y)− Φ(−√y)

where Φ is the standard normal CDF. Taking derivatives gives

fY (y) =
1
√
y
ϕ(
√
y) =

1√
2πy

exp
(
−y

2

)
, y > 0

By the convolution formula, we conclude that for all z > 0, the PDF of Z is given by

fZ(z) =

∫ ∞
−∞

fY (y)fY (z − y)dy =

∫ z

0

1√
2πy

exp
(
−y

2

)
· 1√

2π(z − y)
exp

(
−z − y

2

)
dy

=
1

2π
exp

(
−z

2

)∫ z

0

1√
y(z − y)

dy

=
1

2πz
exp

(
−z

2

)∫ z

0

(y
z

)−1/2 (
1− y

z

)−1/2
dy

=
1

2π
exp

(
−z

2

)∫ 1

0
x−1/2(1− x)−1/2dx

∝ exp
(
−z

2

)
We notice this expression is proportional to the PDF of a Gamma(1, 1/2) distribution evaluated

at z. Hence indeed Z ∼ Gamma(1, 1/2) and its full PDF (with normalizing constant) is

fZ(z) =
1

zΓ(1)
·
(z

2

)1
exp

(
−z

2

)
=

1

2
exp

(
−z

2

)
, z > 0

(b) Find the joint PDF of Z1 = X1 +X2 and Z2 = X1 −X2.

We have (Z1, Z2) = g(X1, X2) where g(x1, x2) = (x1+x2, x1−x2) is invertible with g−1(z1, z2) =(
z1+z2

2 , z1−z22

)
≡ (x1, x2) for each z1, z2 ∈ R. We compute

∂(z1, z2)

∂(x1, x2)
=

1 1

1 −1


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and by the multivariate change of variables formula, the joint PDF of (Z1, Z2) at (z1, z2) ∈ R2

is

fZ1Z2(z1, z2) = fX1X2(x1, x2)
∣∣∣ ∂(z1, z2)

∂(x1, x2)

∣∣∣−1
=

1

2
ϕ(x1)ϕ(x2)

=
1

4π
exp

(
−x

2
1

2

)
exp

(
−x

2
2

2

)
=

1

4π
exp

(
−
(
z1+z2

2

)2
+
(
z1−z2

2

)2
2

)

=
1

4π
exp

(
−z

2
1

2

)
exp

(
−z

2
2

2

)
(c) Are Z1 and Z2 independent? Are they uncorrelated? Explain.

The joint PDF in (b) factors into a product of two terms, one depending on z1 only, the other

depending on z2 only. Thus Z1 and Z2 are independent, hence uncorrelated.

3. Suppose λ ∼ Expo(θ) for some θ > 0 and that given λ, X has a Poisson distribution with rate

parameter λ.

(a) What is the marginal distribution of X?

We have by marginalization that for each x = 0, 1, . . . , we have

P (X = x) =

∫ ∞
0

P (X = x | λ = y)fλ(y)dy

=

∫ ∞
0

exp(−y)
yx

x!
θ exp(−θy)dy

=
θ

x!

∫ ∞
0

exp(−(1 + θ)y)yxdy

=
θ

x!
(1 + θ)−(x+1)

∫ ∞
0

exp(−z)zxdz

= θ(1 + θ)−(x+1) =

(
θ

1 + θ

)
·
(

1

1 + θ

)x

since
∫∞
0 exp(−z)zxdz = Γ(x+1) = x!. By pattern matching, we concludeX ∼ Geom

(
θ

1 + θ

)
.

(b) Compute Cov(X,λ). Hint: It may be helpful to use the law of iterated expectations, which will

be covered in lecture on Monday, August 7. However, iterated expectations is really just LOTE
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written in a compact form, so the problem can be solved using LOTE.

By LOTE, we have

E[Xλ] =

∞∑
x=0

E[Xλ | X = x]P (X = x)

=
∞∑
x=0

xE[λ | X = x]

(
θ

1 + θ

)
·
(

1

1 + θ

)x
Now we derive the posterior distribution of λ:

fλ|X(a | x) ∝ pX|λ(x | a)fλ(a)

∝ exp(−a)ax exp(−θa)

∝ exp(−(1 + θ)a)ax

∝ 1

a
exp(−(1 + θ)a)((1 + θ)a)x+1

which pattern matches the Gamma(x+ 1, 1 + θ) distribution. Hence E[λ | X = x] = x+1
1+θ and

E[Xλ] = (1 + θ)−1
∞∑
x=0

x(x+ 1)

(
θ

1 + θ

)
·
(

1

1 + θ

)x

=
2
(

1− θ
1+θ

)
(1 + θ)

(
θ

1+θ

)2
=

2

θ2

where we recognize the sum as E[X(X + 1)] = E[X2] + E[X] = 2−p
p2

for p = θ/(1 + θ), based on

results we’ve derived for the Geometric distribution.

Alternatively, by iterated expectations we immediately have

E[Xλ] = E[λE[X | λ]] = E[λ2] = Var(λ) + (E[λ])2 =
2

θ2

since X | λ ∼ Pois(λ) and λ ∼ Expo(θ). Having computed E[Xλ], now we can use part (a) to

conclude

Cov(X,λ) = E[Xλ]− E[X]E[λ] =
2

θ2
−

1− θ
1+θ
θ

1+θ

· 1

θ
=

1

θ2

4. (BH 7.71) In humans (and many other organisms), genes come in pairs. Consider a gene of interest,

which comes in two types (alleles): type a and type A. The genotype of a person for that gene

is the types of the two genes in the pair: AA, Aa, or aa (aA is equivalent to Aa). According to

the Hardy-Weinberg law, for a population in equilibrium the frequencies of AA, Aa, aa will be p2,
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2p(1 − p), (1 − p)2 respectively, for some p with 0 < p < 1. Suppose that the Hardy-Weinberg law

holds, and that n people are drawn randomly from the population, independently. Let X1;X2;X3 be

the number of people in the sample with genotypes AA; Aa; aa; respectively.

(a) What is the joint PMF of X1, X2, X3?

By the story of the Multinomial, (X1, X2, X3) ∼ Mult3(n, (p
2, 2pq, q2)) where q = 1 − p. The

PMF is then

P (X1 = n1, X2 = n2, X3 = n3) =
n!

n1!n2!n3!
p2n1(2pq)n2q2n3

for n1 + n2 + n3 = n.

(b) What is the distribution of the number of people in the sample who have an A?

By the story of the Binomial (defining “success” as having an A and “failure” as not having an

A), the distribution is Bin(n, p2 + 2pq).

(c) What is the distribution of how many of the 2n genes among the people are A’s?

Let Yj be how many A’s the j-th person in the sample has. Then Yj is 2 with probability p2, 1

with probability 2pq, and 0 with probability q2, so Yj ∼ Bin(2, p). The Yj are also independent.

Therefore Y1 + · · ·+ Yn ∼ Bin(2n, p).

(d) Now suppose that p is unknown, and must be estimated using the observed data X1, X2, X3.

The maximum likelihood estimator (MLE) of p is the value of p for which the observed data are

as likely as possible. Find the MLE of p. Hint: recall log(x) is an increasing function.

Let x1, x2, x3 be the observed values of X1, X2, X3. The MLE of p is the value of p that

maximizes the function L(p) = p2x1(pq)x2q2x3 = p2x1+x2(1 − p)x2+2x3 (we can omit factors

which are constant with respect to p, since such constants do not affect where the maximum

is). Equivalently, we can maximize the log:

logL(p) = (2x1 + x2) log p+ (x2 + 2x3) log(1− p) :

Setting the derivative of logL(p) equal to 0, we have

2x1 + x2
p

− x2 + 2x3
1− p

= 0
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which rearranges to

p =
2x1 + x2

2(x1 + x2 + x3)
=

2x1 + x2
2n

This value of p does maximize logL(p) since the derivative of logL(p) is positive everywhere to

the left of it and is negative everywhere to the right of it. Thus, the MLE of p, which we denote

by p̂, is given by p̂ = (2X1 +X2)/(2n). Note that this has an intuitive interpretation: it is the

fraction of A’s among the 2n genes.

(e) Now suppose that p is unknown, and that our observations can’t distinguish between AA and

Aa. So for each person in the sample, we just know whether or not that person is an aa (in ge-

netics terms, AA and Aa have the same phenotype, and we only get to observe the phenotypes,

not the genotypes). Find the MLE of p.

Let Y ∼ Bin(n, q2) be the number of aa people, and let y be the observed value of Y . We need

to maximize the function L2(q) = q2y(1 − q2)n−y (we will maximize over q and then find the

corresponding value of p). Then

logL2(q) = 2y log(q) + (n− y) log(1− q2)

so
d logL2(q)

dq
=

2y

q
− 2q(n− y)

1− q2
,

which simplifies to y = q2n. By looking at the sign of the derivative, we see that logL2(q) is max-

imized at q =
√
y/n. Thus, the MLE of q is

√
Y/n, which shows that the MLE of p is 1−

√
Y/n.

5. (BH 8.12) Let T be the ratio X/Y of two i.i.d. N (0, 1) r.v..s X, Y . This is the Cauchy distribution

and it has PDF

fT (t) =
1

π(1 + t2)

(a) Show that 1/T has the same distribution as T using calculus, after first finding the CDF of 1/T

in terms of the CDF FT of T .

By rewriting the event 1/T ≤ v for v ∈ R, we see

FV (v) =


FT (0) + 1− FT (v−1) v > 0

FT (0) v = 0

FT (0)− FT (v−1) v < 0
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Then by the chain rule we have

fV (v) =
1

v2
f

(
1

v

)
=

1

v2
· 1

π(1 + (1/v)2)
=

1

π(1 + v2)
= fT (v)

for all v 6= 0. Thus V has the same distribution as T (recall the CDF only has to be differen-

tiable at all but countably many points, so we can safely ignore the single point v = 0 where

this derivative does not evidently apply, although it will).

(b) Argue that 1/T has the same distribution as T without using calculus.

(X,Y ) are i.i.d., hence exchangeable, so letting g(x, y) = x/y, we know g(X,Y ) = X/Y = T

has the same distribution as g(Y,X) = Y/X = 1/T .

6. (BH 8.18) Let X and Y be i.i.d. N (0, 1) r.v.s, and (R, θ) be the polar coordinates for the point

(X,Y ) so X = R cos(θ) and Y = R sin(θ) with R ≥ 0 and θ ∈ [0, 2π). Find the joint PDF of R2 and

θ. Also find the marginal distributions of R2 and θ, giving their names (and parameters) if they are

distributions we have studied before.

We have X = R cos(θ), Y = R sin(θ). Let W = R2, T = θ and mirror the relationships between the

capital letters via w = r2 = x2 + y2, x =
√
w cos(t), y =

√
w sin(t). By the multivariate change of

variables formula

fWT (w, t) = fXY (x, y)
∣∣∣∂(x, y)

∂(w, t)

∣∣∣ =
e−r

2/2

2π

∣∣∣∂(x, y)

∂(w, t)

∣∣∣
The Jacobian matrix is

∂(x, y)

∂(w, t)
=

 1
2
√
w

cos(t) −
√
w sin(t)

1
2
√
w

sin(t)
√
w cos(t)


which has absolute determinant 1

2 cos2(t) + 1
2 sin2(t) = 1

2 . So the joint PDF of R2 and θ is

fR2θ(w, t) =
1

4π
e−w/2 =

1

2π
· 1

2
e−w/2

for w > 0 and 0 ≤ t < 2π (and 0 otherwise). Thus, R2 and θ are independent, with R2 ∼ Expo(1/2)

and θ ∼ Unif(0, 2π). Note that this problem is Box-Muller in reverse.

7. Emily and Devon each independently generate a Unif(−1, 1) number.

(a) Given that Emily’s number is higher than Devon’s, what is the expected value of Emily’s num-

ber? Is this the same as the (unconditional) expected value of the maximum of Emily and

7



Devon’s numbers?

Let X and Y be Emily and Devon’s numbers, respectively. The joint PDF of (X,Y ) is a constant

1/4 on [−1, 1]2, so

E[X | X > Y ] =
E[XIX>Y ]

P (X > Y )
= 2E[XIX>Y ]

By multivariate LOTUS, we have

E[XIX>Y ] =

∫ 1

−1

∫ 1

y

1

4
xdxdy =

∫ 1

−1

1− y2

8
dy =

1

6

Hence E[X | X > Y ] = 1/3 . By LOTE we have

E[max(X,Y )] = E[max(X,Y ) | X > Y ]P (X > Y ) + E[max(X,Y ) | X < Y ]P (X < Y )

=
1

2
(E[X | X > Y ] + E[Y | Y > X])

By exchangeability/symmetry we have E[X | X > Y ] = E[Y | Y > X] so the answer is yes.

Alternatively you could derive the PDF of max(X,Y ).

(b) What is the covariance between A, the maximum of Emily and Devon’s numbers, and B, the

minimum of Emily and Devon’s numbers? Are A and B independent? Explain. Hint: Think

along the lines of the identity max(a, b) + min(a, b) = a+ b for any numbers a, b.

We have

Cov(A,B) = E[AB]− E[A]E[B] = E[XY ]− E[A]E[B]

since AB = max(X,Y ) min(X,Y ) = XY . We know E[XY ] = E[X]E[Y ] = 0 since X and Y are

independent, hence uncorrelated. Furthermore E[A] = 1/3 by part (a), and since A+B = X+Y

we have E[B] = E[X]+E[Y ]−E[A] = −1/3. Hence Cov(A,B) = 1/9. This is not 0, so A and B

cannot be independent. The lack of independence can also be seen by noting that the support

of B conditional on A varies based on the value of A.
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