
STATS 116: Homework 2

Due: Thursday, July 13, 2023 at 10:00 pm PDT on Gradescope

There are 7 problems on this assignment, each worth 8 points, although subparts within a problem may not

be equally weighted. Credit will be assigned primarily based on reasoning and work, not the final answer.

You do not need to simplify arithmetic expressions unless otherwise noted. While you may discuss the

problems on this assignment other students, you must write up your own solutions. As per the syllabus,

you may occasionally use the Internet or other public resources to clarify concepts with citation when this

information is used as part of your own solution to a homework problem. However, you may not search

for direct solutions to any problems assigned for homework or exams. For example, you can ask ChatGPT

to clarify a particular concept from lecture that may be related to a problem, but you cannot feed it any

part of a course assignment or a substantively similar version.

1. Jane Villanueva is taking a pregnancy test because she was artificially inseminated. Suppose 20

percent of artificially inseminated women get pregnant, although it is known that 25 percent of

artificially inseminated women test positive on this pregnancy test. The false positive rate of the

test among artificially inseminated women is 10 percent (i.e. 10 percent of non-pregnant artificially

inseminated women test positive on the test).

(a) Compute the false negative rate of the test: that is, the probability that an artificially insemi-

nated pregnant woman tests negative.

All probabilities in this problem will implicitly condition on the event that Jane was artificially

inseminated. Let T be the event that Jane tests positive and R be the event that Jane is

pregnant. We are given P (R) = 0.2, P (T ) = 0.25, and P (T | Rc) = 0.1. By LOTP we have

P (T ) = P (T | R)P (R) + P (T | Rc)P (Rc) ⇐⇒ 0.25 = P (T | R) · 0.2 + 0.1 · 0.8

Solving gives P (T | R) = 0.85 and hence the false negative rate is P (T c | R) = 0.15 .

(b) What is the probability that Jane is pregnant, given that she takes the test twice and gets a

positive result both times? Assume the two test results are conditionally independent given

Jane’s pregnancy status.
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Let Ti, i = 1, 2 be the event that Jane tests positive on test i. By Bayes’ rule we have

P (R | T1, T2) =
P (T1, T2 | R)P (R)

P (T1, T2 | R)P (R) + P (T1, T2 | Rc)P (Rc)

=
P (T1 | R)P (T2 | R)P (R)

P (T1 | R)P (T2 | R)P (R) + P (T1 | Rc)P (T2 | Rc)P (Rc)

where the second equality is by conditional independence. With P (T1 | R) = P (T2 | R) = 0.85

as computed above and P (T1 | Rc) = P (T2 | Rc) = 0.1, we plug in numbers to get

P (R | T1, T2) =
0.85 · 0.85 · 0.2

0.85 · 0.85 · 0.2 + 0.1 · 0.1 · 0.8
≈ 0.95

2. Harrison flips a fair coin repeatedly, recording the sequences of flips he observes.

(a) What is the probability he observes the sequence HH for the first time before observing the

sequence HT for the first time?

Let A be the event that HH is observed before HT and Bi be the event that the i-th flip lands

heads. Then

P (A | B1) = P (B2 | B1) = P (B2) = 1/2

by independence of B1 and B2 and the fact that when the first flip is heads, A occurs is and

only if the second flip is heads. Furthermore P (A | Bc
1) = P (A), since given the first flip is tails,

the event A is the event that HH occurs before HT in the sequence of flips starting from the

second, which are independent of the first flip. Then by LOTP

P (A) = P (A | B1)P (B1) + P (A | Bc
1)P (Bc

1) = 1/2 · 1/2 + P (A) · 1/2

which shows P (A) = 1/2 .

(b) What is the probability he observes the sequence HHT for the first time before observing the

sequence HTH?

Let A be the event that HHT is observed before HTH and Bi be the event that the i-th flip

lands heads. If the first flip is tails, the problem “resets” as in part (a), i.e. P (A | Bc
1) = P (A).

If the first flip is heads, then if the second flip is also heads, A happens for sure, as HHT will be

observed on the next flip on which a tail occurs, and HTH cannot have occurred by then (as we

have had no tails before the HHT occurrence). Thus P (A | B1, B2) = 1. If the first flip is heads

and the second flip is tails, then clearly A never occurs whenever the third flip is heads, while
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the problem resets if the third flip is tails as then none of the first three flips can possibly be

part of the “game-ending” sequence (the first HHT or HTH). Hence P (A | B1, B
c
2, B

c
3) = P (A)

and P (A | B1, B
c
2, B3) = 0, so by LOTP with extra conditioning

P (A | B1, B
c
2) = P (A | B1, B

c
2, B3)P (B3 | B1, B

c
2) + P (A | B1, B

c
2, B

c
3)P (Bc

3 | B1, B
c
2)

= 0 · 1/2 + P (A) · 1/2

Another application of LOTP shows

P (A) = P (A | Bc
1)P (Bc

1) + P (A | B1, B2)P (B1, B2) + P (A | B1, B
c
2)P (B1, B

c
2)

= P (A) · 1/2 + 1 · 1/4 + 1/2 · P (A) · 1/4

where the second equality uses independence of the coin flips. Solving gives P (A) = 2/3 .

3. (BH 2.10) Fred is working on a major project. In planning the project, two milestones are set up,

with dates by which they should be accomplished. This serves as a way to track Fred’s progress. Let

A1 be the event that Fred completes the first milestone on time, A2 be the event that he completes

the second milestone on time, and A3 be the event that he completes the project on time. Suppose

that P (Aj+1 | Aj) = 0.8 but P (Aj+1 | Ac
j) = 0.3 for j = 1, 2, since if Fred falls behind on his schedule

it will be hard for him to get caught up. Also, assume that the second milestone supersedes the

first, in the sense that once we know whether he is on time in completing the second milestone, it no

longer matters what happened with the first milestone. We can express this by saying that A1 and

A3 are conditionally independent given A2 and they’re also conditionally independent given Ac
2.

(a) Find the probability that Fred will finish the project on time, given that he completes the first

milestone on time. Also find the probability that Fred will finish the project on time, given that

he is late for the first milestone.

We need to find P (A3 | A1). To do so, let’s use LOTP to condition on whether or not A2 occurs:

P (A3 | A1) = P (A3 | A1, A2)P (A2 | A1) + P (A3 | A1, A
c
2)P (Ac

2 | A1)

Using the conditional independence assumptions, the right-hand side becomes

P (A3 | A2)P (A2 | A1) + P (A3 | Ac
2)P (Ac

2 | A1) = (0.8)(0.8) + (0.3)(0.2) = 0.7

Similarly,

P (A3 | Ac
1) = P (A3 | A2)P (A2 | Ac

1) + P (A3 | Ac
2)P (Ac

2 | Ac
1) = (0.8)(0.3) + (0.3)(0.7) = 0.45
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(b) Suppose that P (A1) = 0.75. Find the probability that Fred will finish the project on time.

By LOTP and part (a),

P (A3) = P (A3 | A1)P (A1) + P (A3 | Ac
1)P (Ac

1) = (0.7)(0.75) + (0.45)(0.25) = 0.6375

4. (BH 2.36) Suppose that in the population of college applicants, being good at baseball is independent

of having a good math score on a certain standardized test (with respect to some measure of “good”).

A certain college has a simple admissions procedure: admit an applicant if and only if the applicant

is good at baseball or has a good math score on the test.

(a) Give an intuitive explanation of why it makes sense that among students that the college admits,

having a good math score is negatively associated with being good at baseball, i.e., conditioning

on having a good math score decreases the chance of being good at baseball.

Even though baseball skill and the math score are independent in the general population of

applicants, it makes sense that they will become dependent (with a negative association) when

restricting only to the students who are admitted. This is because within this sub-population,

having a bad math score implies being good at baseball (else the student would not have been

admitted). So having a good math score decreases the chance of being good in baseball (as

shown in BH 2.16, if an event B is evidence in favor of an event A, then Bc is evidence against

A).

As another explanation, note that 3 types of students are admitted: (i) good math score, good

at baseball; (ii) good math score, bad at baseball; (iii) bad math score, good at baseball. Con-

ditioning on having good math score removes students of type (iii) from consideration, which

decreases the proportion of students who are good at baseball.

(b) Show that if A and B are independent and C = A∪B, then A and B are conditionally dependent

given C (as long as P (A ∩B) > 0 and P (A ∪B) < 1), with

P (A | B,C) < P (A | C)

This phenomenon is known as Berkson’s paradox, especially in the context of admissions to a

school, hospital, etc.

Note B ∩ C = B so P (A | B,C) = P (A | B) = P (A) by independence of A and B. However

P (A | C) =
P (A)

P (C)
> P (A)
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by definition of conditional probability since P (A) > 0 and P (C) < 1.

5. (BH 2.40) Consider the Monty Hall problem, except that Monty enjoys opening door 2 more than

he enjoys opening door 3, and if he has a choice between opening these two doors, he opens door

2 with probability p, where 0.5 ≤ p ≤ 1. To recap: there are three doors, behind one of which

there is a car (which you want), and behind the other two of which there are goats (which you don’t

want). Initially, all possibilities are equally likely for where the car is. You choose a door, which for

concreteness we assume is door 1. Monty Hall then opens a door to reveal a goat, and offers you the

option of switching. Assume that Monty Hall knows which door has the car, will always open a goat

door and offer the option of switching, and as above assume that if Monty Hall has a choice between

opening door 2 and door 3, he chooses door 2 with probability p (with 0.5 ≤ p ≤ 1).

(a) Find the unconditional probability that the strategy of always switching succeeds (unconditional

in the sense that we do not condition on which of doors 2 or 3 Monty opens).

Let Cj be the event that the car is hidden behind door j and let W be the event that we win

using the switching strategy. Using the law of total probability, we can find the unconditional

probability of winning:

P (W ) = P (W | C1)P (C1) + P (W | C2)P (C2) + P (W | C3)P (C3)

= 0 · 1/3 + 1 · 1/3 + 1 · 1/3 = 2/3

(b) Find the probability that the strategy of always switching succeeds, given that Monty opens

door 2.

Let Di be the event that Monty opens door i. Note that we are looking for P (W | D2), which

is the same as P (C3 | D2) as we first choose door 1 and then switch to door 3. By Bayes’ rule

and the law of total probability,

P (C3 | D2) =
P (D2 | C3)P (C3)

P (D2)

=
P (D2 | C3)P (C3)

P (D2 | C1)P (C1) + P (D2 | C2)P (C2) + P (D2 | C3)P (C3)

=
1 · 1/3

p · 1/3 + 0 · 1/3 + 1 · 1/3

=
1

1 + p
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(c) Find the probability that the strategy of always switching succeeds, given that Monty opens

door 3.

The structure of the problem is the same as Part (b) (except for the condition that p ≥ 1/2,

which was not needed above). Imagine repainting doors 2 and 3, reversing which is called which.

By Part (b) with 1− p in place of p,

P (C2 | D3) =
1

1 + (1− p)
=

1

2− p

6. (BH 3.1) People are arriving at a party one at a time. While waiting for more people to arrive they

entertain themselves by comparing their birthdays. Let X be the number of people needed to obtain

a birthday match, i.e. before person X arrives no two people have the same birthday, but when

person X arrives there is a match. Find the PMF of X.

We will make the usual assumptions as in the birthday problem (e.g., exclude February 29). The

support of X is {2, 3, . . . , 366} since if there are 365 people there and no match, then every day of

the year is accounted for and the 366th person will create a match. Let’s start with a couple simple

cases and then generalize:

P (X = 2) =
1

365

since the second person has a 1/365 chance of having the same birthday as the first,

P (X = 3) =
364

365
· 2

365

since X = 3 means that the second person didn’t match the first but the third person matched one

of the first two. In general, for 2 ≤ k ≤ 366 we have

P (X = k) = P (X > k − 1, X = k)

= P (X > k − 1)P (X = k | X > k − 1)

=
365 · 364 . . . (365− k + 2)

365k−1
· k − 1

365

=
(k − 1) · 364 · 363 . . . (365− k + 2)

365k−1

7. Suppose X and Y are discrete random variables with finite support that have the same distribution.

(a) Is it possible that P (X = Y ) = 0? Give an example, or show that it’s not possible.
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Yes, it is possible. Suppose I flip a fair coin so the sample space has two equally likely outcomes,

H and T . Let X(H) = Y (T ) = 1 and X(T ) = Y (H) = 0. Then both X and Y are supported

on {0, 1} and both have PMF p with p(0) = p(1) = 1/2, however X 6= Y always.

(Note a more compact way of writing this solution, in terms of the material of Lecture 8, is to

take any X ∼ Bern(1/2) and Y = 1−X).

(b) Is it possible that P (X > Y ) = 1? Give an example, or show that it’s not possible.

No, it is not possible. Let the common support of X and Y be {a1, . . . , an} where a1 < · · · < an.

Then we have X ≤ Y whenever X = a1, so P (X ≤ Y ) ≥ P (X = a1) > 0 since a1 is in the

support of X, showing P (X > Y ) = 1− P (X ≤ Y ) < 1.
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