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Tie-breaker designs trade off a measure of statistical efficiency against a
short-term gain from preferentially assigning a binary treatment to subjects
with higher values of a running variable x. The efficiency measure can be any
continuous function of the expected information matrix in a two-line regres-
sion model. The short-term gain is expressed as the covariance between the
running variable and the treatment indicator. We investigate how to choose
design functions p(x) specifying the probability of treating a subject with
running variable x in order to optimize these competing objectives, under ex-
ternal constraints on the number of subjects receiving treatment. Our results
include sharp existence and uniqueness guarantees, while accommodating the
ethically appealing requirement that p(x) be nondecreasing in x. Under this
condition, there is always an optimal treatment probability function p(x) that
is constant on the sets (−∞, t) and (t,∞) for some threshold t and generally
discontinuous at x = t . When the running variable distribution is not symmet-
ric or the fraction of subjects receiving the treatment is not 1/2, our optimal
designs improve upon a D-optimality objective without sacrificing short-term
gain, compared to a typical three-level tie-breaker design that fixes treatment
probabilities at 0, 1/2 and 1. We illustrate our optimal designs with data from
Head Start, an early childhood government intervention program.

1. Introduction. Companies, charitable institutions and clinicians often have ethical or
economic reasons to prefer assigning a binary treatment to certain individuals. If this prefer-
ence is expressed by the values of a scalar running variable x, a natural decision is to assign
the treatment to a subject if and only if their x is at least some threshold t . This is a re-
gression discontinuity design, or RDD (Thistlethwaite and Campbell (1960)). Unfortunately,
treatment effect estimates from an RDD analysis typically have very high variance (Gelman
and Imbens (2019), Goldberger (1972), Jacob, Zhu and Somers (2012)), relative to those
from a randomized controlled trial (RCT) that does not preferentially treat any individuals.

A tie-breaker design (TBD) provides a compromise between these competing objectives.
In a typical TBD, the top ranked subjects get the treatment, the lowest ranked subjects do
not get it and the remaining subjects’ treatment status is randomized. The earliest tie-breaker
reference we are aware of is Campbell (1969) where x was discrete and the randomization
broke ties among subjects with identical values of x. Past settings for the TBD include of-
fering remedial English to incoming university students based on their high school English
proficiency (Aiken et al. (1998)), assigning arrested juveniles into a diversion program to
reduce delinquency (Lipsey, Cordray and Berger (1981)), providing higher education schol-
arships based on a judgment of the applicants’ needs and academic strengths (Abdulkadiroglu
et al. (2017), Angrist, Autor and Pallais (2020)), and designing clinical trials (Trochim and
Cappelleri (1992)), where they are known as cutoff designs.

The tie-breaker design problem we study involves choosing treatment probabilities pi for
subjects i = 1, . . . , n based on their running variables xi . These probabilities are chosen
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before observing the response values y1, . . . , yn but with the running variables x1, . . . , xn

known. The goal is to optimally trade off competing statistical and economic objectives, as
discussed above. We assume throughout that pi = pi′ whenever xi = xi′ .

Consistent with the optimal experimental design literature, we consider the statistical
objective to be an “efficiency” criterion that measures estimation precision. Specifically,
our criterion will be a function �(·) of the information (scaled inverse variance) ma-
trix In(p1, . . . , pn) for the model parameters β = (β0, β1, β2, β3)

� in a two-line regres-
sion model relating the response yi to the running variable xi and a treatment indicator
zi ∈ {−1,1}:

yi = β0 + β1xi + β2zi + β3xizi + εi.(1)

Despite its simplicity, this working model poses some challenging design problems. In Sec-
tion 6, we describe some more general modeling settings for tie-breaker models. Through-
out, we assume that the running variable is centered, that is, (1/n)

∑
i xi = 0, and that the

εi have common variance σ 2 > 0. Here, zi = 1 indicates treatment and so pi = Pr(zi =
1) = (1 + E(zi))/2). For model (1), the information matrix is In = E(XiX�

i ) where Xi =
(1, xi, zi, xizi)

� ∈ R
4 and the expectation is taken over the treatment assignments zi , con-

ditional on the running variables xi (whose values are known). Note that the ordinary least
squares estimate β̂ of β satisfies E(Var(β̂)−1) = nIn/σ

2. Common examples of efficiency
criteria �(·) in the literature, such as the D-optimality criterion �D(·) = log(det(·)), are
concave in both In and p = (p1, . . . , pn)

� (Boyd and Vandenberghe (2004)). However, our
theoretical results only require continuity of �(·).

The competing objective is a preference for treating individuals with higher running vari-
ables x, as discussed earlier. We express it as an equality constraint on the scaled covariance
xp ≡ (1/n)

∑n
i=1 xipi between treatment and the running variable (recall that the latter is

known, hence viewed as nonrandom). Under the two-line model (1), this constraint has the
following economic interpretation. We take y to be something like economic value or stu-
dent success, where larger y is better. We expect that β3 > 0 holds in most of our motivating
problems. The expected value of y per customer under (1) is then

E(yi) = β0 + β2 · (2p̄ − 1) + β3 · (2xp − 1),(2)

where p̄ ≡ (1/n)
∑n

i=1 pi . Equation (2) shows that the expected gain is unaffected by β0 or
β1. Furthermore, we assume the proportion of treated subjects is fixed by an external budget,
that is, an equality constraint p̄ = p̃ for some p̃ ∈ (0,1). For instance, there might be only
a set number of scholarships or perks to be given out. The only term affected by the design
in (2) is then β3 · xp, as pointed out by Owen and Varian (2020). For β3 > 0, the short-term
average value per customer grows with xp and we would want that value to be large. Similar
functionals are also commonly studied as regret functions in bandit problems (Goldenshluger
and Zeevi (2013)) and sequential experimental design (Metelkina and Pronzato (2017)).

We are now ready to formulate the tie-breaker design problem as the following constrained
optimization problem. Given ordered running variable values x1 ≤ x2 ≤ · · · ≤ xn,

maximize �
(
In(p)

)
over p = (p1, . . . , pn) ∈ A
subject to n−1 ∑n

i=1 pi = p̃ and n−1 ∑n
i=1 xipi = x̃p

(3)

for some constants p̃ and x̃p. The first equality constraint in (3) is a budget constraint due to
the cost of treatment and the second constraint is on the short-term gain mentioned above. We
consider two different sets A in detail. The first is [0,1]n. The second is {p ∈ [0,1]n|0 ≤ p1 ≤
p2 ≤ · · · ≤ pn ≤ 1}, which requires treatment probabilities to be nondecreasing in the running
variable x. Such a monotonicity constraint prevents more qualified students from having a
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lower chance of getting a scholarship than less qualified ones or more loyal customers having
a lower chance for a perk than others. It also eliminates perverse incentives for subjects to
lower their xi . To our knowledge, such a monotonicity constraint has not received much
attention in the optimal design literature, though it is enormously appealing in our motivating
applications.

When the efficiency criterion ψ(·) is concave in p, then a solution to (3) can be found
numerically via convex optimization (Metelkina and Pronzato (2017), Morrison and Owen
(2022)). However, when xi is univariate, we show the problem is tractable enough to provide
a simple yet complete analytical characterization of the optimal pi , even if the efficiency
criterion is not concave. We show, under general conditions, that we can always find optimal
treatment probabilities that are piecewise constant in x, with the number of pieces small and
independent of n.

There is a well-developed literature for optimal experiment design in the presence of mul-
tiple objectives. Early examples of a constrained optimization problem of the form (3) were
designed to account for several of the standard efficiency objectives simultaneously (Lee
(1987), Lee (1988), Stigler (1971)). Läuter (1974), Läuter (1976) proposed maximizing a
convex combination of efficiency objectives, a practice now typically referred to as a “com-
pound” design approach. It is now well known (Clyde and Chaloner (1996), Cook and Wong
(1994)) that in many problems with concave objectives, optimal constrained and compound
designs are equivalent. In this paper, we provide another approach to reduce the constrained
problem (3) to a compound problem that can handle the monotonicity constraint. At the same
time, we provide simple ways to compute our optimal designs that are based directly on the
parameters p̃ and x̃p in our constrained formulation (3), and do not require specifying the
Lagrange multipliers appearing in the corresponding compound problem. Those Lagrange
multipliers involve ratios of information gain to economic gain where each of those quanti-
ties is only known up to a multiplicative constant.

Problems similar to (3) have received significant attention in the sequential design of clin-
ical trials. Biased-coin designs, beginning with the simple procedure of Efron (1971), have
been developed as a compromise between treatment balance and randomization; see Atkinson
(2014) for a review. Covariate-adaptive biased-coin designs often replace the balance objec-
tive with an efficiency criterion such as D-optimality (Atkinson (1982), Rosenberger and
Sverdlov (2008)). Response-adaptive designs also optimize for some efficiency objective but
simultaneously seek to minimize the number of patients receiving the inferior treatment for
ethical reasons (Hu and Rosenberger (2006)). Various authors such as Bandyopadhyay and
Biswas (2001) and Hu, Zhu and Hu (2015) propose sequential designs to effectively navigate
this trade-off. When they also account for covariate information, they are called covariate-
adjusted response-adaptive (CARA) designs (Zhang and Hu (2009), Zhang et al. (2007)).

In the CARA literature especially, there has been significant recent interest in optimal de-
sign for nonlinear models (Biswas and Bhattacharya (2018), Metelkina and Pronzato (2017),
Sverdlov, Rosenberger and Ryeznik (2013)). Unlike optimal designs in linear models such
as (1), designs in nonlinear models can typically only be locally optimal, meaning that their
optimality depends on the values of the unknown parameters (Chernoff (1953)). While we
may be able to obtain increasingly reliable estimates of these parameters over time in se-
quential settings—further motivating response-adaptive designs—our motivating problems
are primarily those where subjects are treated in batches. For instance, when measuring the
impact of a scholarship on future educational attainment, we know the running variables for
all subjects before designing the experiment, but it can take several years to collect a single
set of responses on which to compute a parameter estimate. Response-adaptive and locally
optimal designs are not well suited to this setting, and so we focus on optimal design under
the linear model (1) in a nonsequential setting, which presents a sufficient challenge.
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The existing literature on problems like (3) typically considers the running variable x to be
random. For example, Section 7 of Owen and Varian (2020) investigates tie-breaker designs
under the assumption that the running variable is either uniform or Gaussian, and exactly half
the subjects are to be treated. They consider the typical three-level tie-breaker design where
subjects with running variable x above some threshold � always get the treatment, subjects
with running variable below −� never get the treatment, and the remaining subjects are ran-
domized into treatment with probability 1/2. They find that several c-optimality criteria of
statistical efficiency—corresponding to minimizing the variance in estimating various linear
combinations of treatment effect coefficients β2 and β3 in the two line model (1)—are mono-
tonically increasing in the width � of the randomization window, with the RCT (� → ∞)
most efficient and the RDD (� = 0) least efficient. Conversely, short-term gain is decreasing
in �. They also show the three-level design is optimal for any given level of short-term gain.
In this article, we show strong advantages to moving away from that three-level design when
the running variable is not symmetric, or we cannot treat half of the subjects.

Metelkina and Pronzato (2017) studied a further generalization of the optimal tie-breaker
design problem, motivated by CARA designs. They allow for an arbitrary number K > 2
of treatments and consider locally optimal designs for possibly nonlinear models. Addition-
ally, their running variable can be multidimensional and they allow for sequential treatment
allocation schemes. In particular, their Example 1 is similar, though not quite identical, to
a random-x generalization of (3). Crucially, however, their proof does not generalize to the
case where we require the treatment probabilities be monotone. Even without the monotonic-
ity constraint, we are able to provide a much sharper characterization of the solutions to our
more specific problem (Section 3.1).

In Section 2, we pose a random-x generalization of the fixed-x problem (3). The solution
is then a function p(·) mapping the running variable x to [0,1], specifying the probability of
treatment for a subject with running variable x. We show this problem reduces precisely to (3)
when the running variable distribution is assumed to be uniform on the known {x1, . . . , xn}.
The random-x formulation is also more consistent with previous work (Metelkina and Pron-
zato (2017), Owen and Varian (2020)) and enables us to use classical results from hypothesis
testing in Section 3 to precisely characterize optimal designs. In particular, Theorem 2 shows
that, under the monotonicity constraint on p, there always exists a solution to (3) with a
threshold t ′ such that p(xi) takes one value for all xi < t ′ and (when x̃z > 0) a strictly larger
value for all xi > t ′. The value of p at any xi = t ′ is between those other two values. Section 4
presents some results on the trade-off between a specific D-optimality efficiency criterion
and short-term gain for these optimal designs. Examples of this trade-off for several running
variable distributions are given in Section 5. That section also includes a fixed-x application
based on Head Start—a government assistance program for low-income children—as well
as a description of how to compute our optimal designs when x is either fixed or random.
Finally, Section 6 summarizes the main results.

2. Random running variable. Our random-x generalization of (3) assumes the running
variables xi are samples from a common distribution F , which we hereafter identify with the
corresponding cumulative distribution function (CDF). It considers an information matrix
that averages over both the random treatment assignments and randomness in the running
variables. Before stating the problem, we briefly review the standard setting of optimal design
in multiple linear regression models; see, for example, Atkinson, Donev and Tobias (2007)
for further background. In the simplest case, the user assumes the standard linear model yi =
xT

i β +εi with the goal of selecting covariate values x1, . . . ,xn ∈ R
p to optimize an efficiency

criterion that is a function of the information matrix X TX , where X ∈ R
n×p is the design

matrix with ith row xT
i . Perhaps the most common such criterion is D-optimality, which
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corresponds to maximizing log(det(X TX )). Another popular choice is c-optimality, which
minimizes cT(X TX )−1c for some choice of c ∈ R

p . This can be interpreted as minimizing
Var(c�β̂|X ), where β̂ is the ordinary least squares estimator.

The study of optimal design is often simplified by the use of design measures. A de-
sign measure ξ is a probability distribution from which to generate the covariates xi . The
relaxed optimal design problem involves selecting a design measure ξ instead of a finite
number of covariate values x1, . . . ,xn. The objective is to optimize for the desired func-
tional of the expected information matrix I(ξ) ≡ Eξ [X TX ] over some space 	 of design
measures ξ . For instance, a design measure ξ∗ is D-optimal (for the relaxed problem) if
ξ∗ ∈ arg maxξ∈	 det(I(ξ)), and c-optimal if ξ∗ ∈ arg minξ∈	 c�I(ξ)−1c. The original opti-
mal design problem restricts 	 to only consist of discrete probability distributions supported
on at most n distinct points with probabilities that are multiples of 1/n.

For the tie-breaker design problem, our regression model (1) includes both the running
variables xi and the treatment indicators zi as covariates. But the experimenter does not have
control over the entire joint distribution of (xi, zi). The running variable is externally de-
termined, so they can only specify the conditional distribution of the treatment indicator zi

given the running variable xi . This conditional distribution is specified by a design function
p : R → [0,1] such that p(x) ≡ Pr(zi = 1|xi = x). As mentioned above, we assume xi ∼ F

for a known, fixed distribution F . This allows us to drop subscripts i when convenient. For
any two design functions p and p′, we say p = p′ whenever PrF ({x : p(x) = p′(x)}) = 1.
We only need a minimal assumption on F , which can be continuous, discrete or neither.

ASSUMPTION 1. 0 < VarF (x) < ∞ with EF (x) = 0.

The mean-centeredness part of Assumption 1 loses no generality, due to the translation
invariance of estimation under the two line model (1). All expectations involving x hereafter
omit the subscript F from all such expectations with the implicit understanding that x ∼ F .

The random-x tie-breaker design problem is as follows:

maximize �
(
I(p)

)
over p ∈ F
subject to Ep(z) = z̃

and Ep(xz) = x̃z.

(4)

Here, z̃ and x̃z are constants analogous to p̄ and xp, respectively, in (3), F is a collection of
design functions, and I(p) is the expected information matrix under the model (1), averaging
over both x ∼ F and z|x ∼ p. This problem can be viewed as a constrained relaxed optimal
design problem under the regression model (1) where the set 	 of allowable design measures
is indexed by the design functions p ∈ F .

To interpret the equality constraints in (4), it is helpful to note that

Ep

(
xaz

) = E
(
xa

Ep(z|x)
) = E

(
xa(

2p(x) − 1
)) = 2E

(
xap(x)

) −E
(
xa)

(5)

for any a ≥ 0 with E(|x|a) < ∞. In particular, for each positive integer a, there exists an
invertible linear mapping ϕa : Ra+1 → R

a+1 that does not depend on the design p and
maps (Ep(z),Ep(xz), . . . ,Ep(xaz)) to (E(p(x)),E(xp(x)), . . . ,E(xap(x))). For example,
ϕ1(x, y) = (1/2)(1 + x, y). Taking a = 0 in (5), we see that the constraint Ep(z) = z̃ in (4) is
equivalent to a budget constraint requiring the expected proportion of subjects to be treated
to be (1 + z̃)/2. Taking a = 1 in (5) shows that the second constraint Ep(xz) = x̃z in (4) sets
the expected level of short-term gain. In Section 2.2, we provide some guidance on how to
choose x̃z in practice.

From computing the expected information matrix I(p) in Section 2.3, we will see that
the problem (4) reduces to the finite-dimensional problem (3) when F is discrete, placing
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probability mass n−1 on each of the known running variable values x1, . . . , xn. Thus, to
solve (3) it suffices to solve the problem (4) for any F satisfying Assumption 1, which must
hold for any discrete distribution with finite support.

2.1. Some design functions. For convenience, we introduce some notation for certain
forms of the design function p. We will commonly encounter designs of the form

pA(x) ≡ 1(x ∈ A)(6)

for a set A ⊆ R. Another important special case consists of two-level designs,

p�,u,t (x) ≡ �1(x < t) + u1(x ≥ t),(7)

for treatment probabilities 0 ≤ � ≤ u ≤ 1 and a threshold t ∈ R. For example, p0,1,t is a sharp
RDD with threshold t , while for any t , pθ,θ,t is an RCT with treatment probability θ .

The condition � ≤ u ensures that p(x) is nondecreasing in x; we refer to such designs as
monotone. Under a monotone design, a subject cannot have a lower treatment probability than
another subject with lower x. We also define a symmetric design to be one for which p(−x) =
1−p(x); for instance, p might be the CDF of a symmetric random variable. Finally, the three-
level tie-breaker design from Owen and Varian (2020) is both monotone and symmetric and
defined for � ∈ [0,1] by

p3,�(x) ≡ 0.5 × 1
(|x| ≤ �

) + 1(x > �)(8)

when F is the U(−1,1) distribution. Note that for all �, p3,� always treats half the subjects,
that is, z̃ = 0. The generalization to other z̃ and running variable distribution functions F is

p3;̃z,�(x) = 0.5 × 1
(
a(̃z,�) < x < b(̃z,�)

) + 1
(
x ≥ b(̃z,�)

)
,(9)

where a(̃z,�) = F−1((1 − z̃)/2 − �) and b(̃z,�) = F−1((1 − z̃)/2 + �).

2.2. Bounds on short-term gain. Before studying optimal designs, we impose lower and
upper bounds on the possible short-term gain constraints x̃z to consider, for each possible
z̃ ∈ (−1,1). For an upper bound, we use x̃zmax(̃z), the maximum x̃z that can be attained
by any design function p satisfying the treatment fraction constraint Ep(z) = z̃. It turns out
that this upper bound is always uniquely attained. If the running variable distribution F is
continuous, it is uniquely attained by a sharp RDD. We remind the reader that uniqueness of
a design function satisfying some property means that for any two design functions p and p′
with that property, we must have Pr(p(x) = p′(x)) = 1 under x ∼ F .

LEMMA 1. For any z̃ ∈ [−1,1] and running variable distribution F , there exists a unique
design pz̃ satisfying

Epz̃(z) = z̃ and(10)

pz̃(x) =
{

1, x > t,

0, x < t,
(11)

for some t ∈ R. Any p that satisfies the treatment fraction constraint (10) also satisfies

Ep(xz) ≤ Epz̃(xz) ≡ x̃zmax(̃z)(12)

with equality if and only if p = pz̃, that is, Pr(p(x) = pz̃(x)) = 1 under x ∼ F .
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REMARK 1. Notice that Equation (11) does not specify pz̃(x) at x = t . If F is contin-
uous, then any value for pz̃(t) yields an equivalent design function, but if F has an atom
at x = t then we will require a specific value for pz̃(t) ∈ [0,1]. We must allow F to have
atoms to solve the finite-dimensional problem (3). While we specify pz̃(t) in the proof of
Lemma 1 below, later results of this type do not give the values of design functions at such
discontinuities.

REMARK 2. If F is continuous, then pz̃ is an RDD: pz̃ = p0,1,t for t = F−1((1 − z̃)/2).
We call the design pz̃ a generalized RDD for general F satisfying Assumption 1.

REMARK 3. The threshold t in (11) is essentially unique. If there is an interval (t, s)

with Pr(t < x < s) = 0, then all step locations in [t, s) provide equivalent generalized RDDs.

PROOF OF LEMMA 1. If z̃ ∈ {−1,1}, then the only design functions (again, up to unique-
ness w.p.1 under x ∼ F ) are the constant functions p(x) = 0 and p(x) = 1, and the result
holds trivially. Thus, we can assume that z̃ ∈ (−1,1). By (5), the existence of pz̃ follows by
taking t = inf{s : F(s) ≥ (1 − z̃)/2} and

pz̃(t) =
⎧⎪⎨⎪⎩

0 if Pr(x = t) = 0,
F (t) − (1 − z̃)/2

Pr(x = t)
if Pr(x = t) > 0.

To show (12), fix any design p satisfying (10) and notice that E(p(x) − pz̃(x)) = 0 means

E
(
p(x)1(x < t)

) + (
p(t) − pz̃(t)

)
Pr(x = t) +E

((
p(x) − 1

)
1(x > t)

) = 0.

Then E(x(pz̃(x) − p(x))) equals

E
(−xp(x)1(x < t)

) + t
(
pz̃(t) − p(t)

)
Pr(x = t) +E

(
x
(
1 − p(x)

)
1(x > t)

)
≥ t

[
E

(−p(x)1(x < t)
) + (

pz̃(t) − p(t)
)

Pr(x = t) +E
((

1 − p(x)
)
1(x > t)

)]
= 0

with equality iff (t − x)p(x)1(x < t) = (x − t)(1 − p(x))1(x > t) = 0 for a set of x with
probability one under F , that is, iff p satisfies (11) with probability one under x ∼ F . �

By symmetry, the design that minimizes Ep(xz) over all designs p with Ep(z) = z̃ is
p1,0,s where s = F−1((1 + z̃)/2). Notice that Ep1,0,s

(xz) = x̃zmin(̃z) ≡ 2E(x1(x < s)) < 0.
We impose a stricter lower bound of x̃z ≥ 0 in the context of problem (4). This is motivated
by the fact that the running variable x has mean 0 (Assumption 1), meaning that Ep(xz) = 0
whenever the design function p is constant, corresponding to an RCT. Designs with x̃z < 0
exist for all z̃ ∈ (−1,1) but would not be relevant in our motivating applications, as they
represent scenarios where subjects with smaller x are more preferentially treated than in an
RCT. We hence define the feasible input space J by

J ≡ {
(̃z, x̃z)| − 1 < z̃ < 1,0 ≤ x̃z ≤ x̃zmax(̃z)

} ⊆R
2.(13)

Any design function p for which the moments (Ep(z),Ep(xz)) lie within the feasible input
space J is referred to as an input-feasible design function.

If the design p is input-feasible, we can write Ep(xz) = δ · x̃zmax(Ep(z)) for some δ ∈
[0,1]. The parameter δ corresponds to the amount of additional short-term gain attained by
the design p over an RCT, relative to the amount of additional short-term gain attained by
the generalized RDD pEp(z) that treats the same proportion of subjects as p. For instance,
δ = 0.4 means that the design p has a short-term gain that is 40% of the way from that of an
RCT to the maximum attainable short-term gain under the treatment fraction constraint.
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2.3. Expected information matrix and equivalence of D-optimality and c-optimality. We
now explicitly compute the expected information matrix

I(p) = σ−2
E

(
n−1X TX

) = σ−2

⎛⎜⎜⎜⎝
1 0 E(z) E(xz)

0 E
(
x2)

E(xz) E
(
x2z

)
E(z) E(xz) 1 0
E(xz) E

(
x2z

)
0 E

(
x2)

⎞⎟⎟⎟⎠
= σ−2

(
D C

C D

)
,

(14)

where

C =
(
E(z) E(xz)

E(xz) E
(
x2z

)) , D =
(

1 0
0 E

(
x2)) .

We have omitted the dependence of the expectations on the design p for brevity. Recall that I
depends on F as well, though the experimenter can only control p. When F = (1/n)

∑n
i=1 δxi

and the running variable values x1, . . . , xn are mean-centered, the expected information ma-
trix I(p) in (14) is precisely the fixed-x information matrix In(p1, . . . , pn), identifying
pi ≡ p(xi). This shows that the random-x problem (4) is indeed strictly more general than
the fixed-x problem (3). Equation (14) also shows that any efficiency objective �(I(p)) only
depends on the treatment indicators z through their marginal distributions conditional on x,
and not on their joint distribution. In the fixed-x context, this means that, for instance, one
can assign treatments to obey an exact budget constraint n−1 ∑n

i=1 zi = p̃ by stratification
(instead of independently given x) without changing the information matrix.

While we will characterize solutions to the optimal design problem (4) for any contin-
uous efficiency criterion �(·), in Section 4 we will prove some additional results for the
D-optimality criterion �D(·) = log(det(·)). We now show that D-optimality is of particular
interest to us, as it corresponds exactly with c-optimality for c = (0,0,0,1)�, the primary
efficiency criterion considered by Owen and Varian (2020).

Following that paper, we note we can assume σ 2 = 1 WLOG (as D-optimality is scale
invariant). Then for (xi, zi) independent, by the law of large numbers and standard block
matrix inversion formulas,

nVar(β̂3|X ) = n
[(
X�X

)−1]
44

a.s.→ (
I−1)

44 = M11(p)

det(M(p))
,(15)

where M = M(p) is the Schur complement

M = D − CD−1C

=

⎛⎜⎜⎜⎝
1 −E(z)2 − E(xz)2

E(x2)
−E(xz) ·E(z) − E(x2z)E(xz)

E(x2)

−E(xz) ·E(z) − E(x2z)E(xz)

E(x2)
E

(
x2) −E(xz)2 − E(x2z)2

E(x2)

⎞⎟⎟⎟⎠ .
(16)

Equation (15) then shows that maximizing Eff(p) := det(M(p))/M11(p) corresponds to c-
optimality for c = (0,0,0,1)�, so it suffices to show that maximizing Eff(p) is equivalent to
D-optimality. Before proceeding further, we present the following result to show that Eff(p)

is well-defined for any input-feasible design p. To maintain the interpretability of Eff(·) as an
inverse asymptotic variance, we do not normalize Eff(·) to lie between 0 and 1 (some authors
define the efficiency of a design as a ratio to the most efficient design).

COROLLARY 1. For any (̃z, x̃z) ∈ J , M11 = 1 − z̃2 − (x̃z)2/E(x2) > 0.
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PROOF. See Appendix A. �

Noting det(I) = det(D)det(M) = E(x2)det(M), we see that maximizing det(I) (D-
optimality) is equivalent to maximizing det(M). But M11 only depends on p through
Ep(z) and Ep(xz), so any two input-feasible designs p and p′ satisfying the equality con-
straints in (4) must have M11(p) = M11(p

′). We conclude that the D-optimality criterion
�D(I(p)) and the c-optimality criterion Eff(p) yield the same solutions to (4) for all
(̃z, x̃z) ∈ J .

3. Optimal design characterizations. To solve the constrained optimization prob-
lem (4), we begin by observing that the expected information matrix I(p), computed in (14),
only depends on the design function p through the quantities Ep(z), Ep(xz) and Ep(x2z).
Then the same is true for any efficiency objective �(I(p)). Consequently, for any continuous
� we can write �(I(p))) = g�(Ep(z),Ep(xz),Ep(x2z)) for some continuous g� :R3 →R

that may depend on the running variable distribution F .
Fixing (̃z, x̃z) ∈ J and the set F of permissible design functions, we say a feasible design

p ∈ F is one that satisfies the equality constraints in (4), that is, Ep(z) = z̃ and Ep(xz) = x̃z.
Thus, the efficiency criterion �(I(p)) can only vary among feasible designs p through the
single quantity Ep(x2z). Furthermore, any two feasible designs p and q with Ep(x2z) =
Eq(x

2z) must have the same efficiency. Thus, we can break down the problem (4) into two
steps. First, we find a solution

x̃2z
∗
(̃z, x̃z;�) ∈ arg max

a∈IF (̃z,x̃z)

g�(̃z, x̃z, a),(17)

where

(18) IF (̃z, x̃z) = {
Ep

(
x2z

)|Ep(z) = z̃,Ep(xz) = x̃z for some p ∈ F
} ⊆ [−E

(
x2)

,E
(
x2)]

is the set of values of Ep(x2z) attainable by some feasible design p ∈ F . Then we must find

a feasible design p ∈F that satisfies Ep(x2z) = x̃2z
∗
(̃z, x̃z;�).

The next result shows that when F is convex, IF (̃z, x̃z) is an interval. For our two choices
of F of interest, Propositions 1 and 2 will show it is a closed interval, so (17) will always
have a solution when �(·) is continuous.

LEMMA 2. Suppose feasible designs p, p′ ∈ F satisfy Ep(x2z) ≤ Ep′(x2z), where F is
convex. Then if Ep(x2z) ≤ γ ≤ Ep′(x2z), there exists feasible p(γ ) ∈ F with Ep(γ )(x2z) = γ .

PROOF. If Ep′(x2z) = Ep(x2z), then either of them is a suitable p(γ ). Otherwise, take
λ ∈ [0,1] so that γ = λEp(x2z) + (1 − λ)Ep′(x2z). Then p(γ ) = λp + (1 − λ)p′ is in F by
convexity and, by direct computation of the moments Ep(xaz) for a ∈ {0,1,2}, feasible with
Ep(x2z) = γ . �

The endpoints of IF (̃z, x̃z) can be computed as the optimal values of the following con-
strained optimization problems:

maximize Ep

(
x2z

)
minimize Ep

(
x2z

)
over p ∈ F over p ∈ F
subject to Ep(z) = z̃ subject to Ep(z) = z̃

and Ep(xz) = x̃z and Ep(xz) = x̃z.

(19)
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Given solutions pmax and pmin to the problems (19), Lemma 2 shows that the design

popt(x) =

⎧⎪⎪⎨⎪⎪⎩
pmax(x) Epmax

(
x2z

) ≤ x̃2z
∗
(̃z, x̃z;�),

pmin(x) Epmin

(
x2z

) ≥ x̃2z
∗
(̃z, x̃z;�),

λpmin(x) + (1 − λ)pmax(x) else,

(20)

solves the problem (4) for λ = (Epmax(x
2z) − x̃2z

∗
(̃z, x̃z;�))/(Epmax(x

2z) −Epmin(x
2z)). If

Epmax(x
2z) = Epmin(x

2z), then all feasible designs p have the same efficiency, so any one of
them is optimal.

The remainder of this section is concerned with characterizing the solutions to the prob-
lems (19) for two specific choices of design function classes F : the set of all measurable
functions into [0,1], and the set of all such monotone functions. For these two choices of
F , solutions pmax and pmin exist for any (̃z, x̃z) ∈ J and are unique. Our argument uses ex-
tensions of the Neyman–Pearson lemma (Neyman and Pearson (1933)) in hypothesis testing.
These extensions are in Dantzig and Wald (1951), whose two authors discovered the relevant
results independently of each other. We use a modern formulation of their work, adapting the
presentation by Lehmann and Romano (2005).

LEMMA 3. Consider any measurable h1, . . . , hm+1 : R → R with E(|hi(x)|) < ∞, i =
1, . . . ,m + 1. Define S ⊆R

m to be the set of all points c = (c1, . . . , cm) such that

E
(
p(x)hi(x)

) = ci, i = 1, . . . ,m,(21)

for some p ∈ F , where F is some collection of measurable functions from R into [0,1]. For
each c ∈ S, let Fc be the set of all p ∈ F satisfying (21). If F is such that

S′ = {
(c, cm+1) ∈ R

m+1|c ∈ S, cm+1 = E
(
p(x)hm+1(x)

)
for some p ∈ Fc

}
is closed and convex and c ∈ intS, then:

1. There exists p ∈ Fc and k1, . . . , km ∈ R such that

p ∈ arg max
q∈F

E

(
q(x)

(
hm+1(x) −

m∑
i=1

kihi(x)

))
, and(22)

2. p ∈ arg maxq∈Fc
E(q(x)hm+1(x)) if and only if p ∈ Fc satisfies (22) for some

k1, . . . , km.

PROOF. Claim 1 and necessity of (22) in claim 2 follows from the proof of part (iv) of
Theorem 3.6.1 in Lehmann and Romano (2005), which uses the fact that S′ is closed and
convex to construct a separating hyperplane in R

m+1. Sufficiency of (22) in claim 2 follows
from part (ii) of that theorem, and is often called the method of undetermined multipliers.

�

Lemma 3 equates a constrained optimization problem (item 2) and a compound optimiza-
tion problem (item 1). Unlike typical equivalence theorems, it does not require F to be the
set of all measurable design functions, and uses an entirely different proof technique. Fol-
lowing Whittle (1973), equivalence theorems in optimal design are now popularly proven
using the concept of Fréchet derivatives on the space of design functions (measures). How-
ever, such approaches often do not apply when F is restricted to be the set of all monotone
design functions. Most relevant to our problem, the proof of Corollary 2.1 in the supplement
of Metelkina and Pronzato (2017) involves Fréchet derivatives in the direction of design func-
tions supported at a single value of x, which are not monotone. However, the use of Lemma 3
requires an objective linear in p, where typical equivalence theorems only require concavity.
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3.1. Globally optimal designs. We now solve the design problem (4) in the case that
F is the set of all measurable functions p : R → [0,1]. We first explain how the results
of Metelkina and Pronzato (2017) do not adequately do so already. Identifying our design
functions p with their design measures ξ , Corollary 2.1 of Metelkina and Pronzato (2017)
does not provide any information about what an optimal solution popt(x) to (4) would be for
values of x where G1(popt(·);x) = G2(popt(·);x). Here, G1 and G2 are quantities derived
from the aforementioned Fréchet derivatives, depending on the constraints z̃ and x̃z. Unfor-
tunately, this lack of information about popt holds for all x both in their Example 1 and in
our setting. Their example skirts this limitation by noting some moment conditions on popt
implied by the equality G1 = G2 when the running variable is uniform and the efficiency
criterion is D-optimality, and then manually searching for some parametric forms of popt for
which it is possible to satisfy these conditions. By contrast, the results in this section apply
Lemma 3 with F the set of all design functions, and show a simple stratified design function
is always optimal for any running variable distribution F and continuous efficiency criterion.
This enables optimal designs to be systematically and efficiently constructed (Section 5).

We will apply Lemma 3 with m = 2 constraints pertaining to h1(x) = 1 and h2(x) = x.
Our objective function is based on h3(x) = x2. When the running variable distribution F is
continuous, recalling the notation (6), the solutions to (19) take the forms pmax = p[a1,a2]c and
pmin = p[b1,b2] for some intervals [a1, a2] and [b1, b2] (here [a1, a2]c denotes R \ [a1, a2]).

PROPOSITION 1. Let F be the set of all measurable functions from R into [0,1]. For any
(̃z, x̃z) ∈ J , there exist unique solutions pmax and pmin to the optimization problems (19).
These solutions are the unique feasible designs satisfying

pmax(x) =
{

1, x /∈ [a1, a2],
0, x ∈ (a1, a2),

and pmin(x) =
{

1, x ∈ (b1, b2),

0, x /∈ [b1, b2],(23)

for some a1 ≤ a2 and b1 ≤ b2, which depend on (̃z, x̃z) and can be infinite if x̃z = x̃zmax(̃z).

PROOF. If x̃z = x̃zmax(̃z), then the proposition follows by Lemma 1 and taking a1 =
−∞, a2 = t = b1 and b2 = ∞. Thus, we can assume that x̃z < x̃zmax(̃z). We give the proof
for pmax in detail. The argument for pmin is completely symmetric.

As noted above, we are in the setting of Lemma 3 with m = 2, h1(x) = 1, h2(x) = x and
h3(x) = x2. The collection F here is the set of all measurable functions from R into [0,1], so
the corresponding S′ is closed and convex, as shown in part (iv) of Theorem 3.6.1 in Lehmann
and Romano (2005). By Lemma 1 and (5), we can write intS = ϕ1(T ) where ϕ1 is defined
in the discussion around (5) and

T = {
(̃z, x̃z)| − 1 < z̃ < 1, x̃zmin(̃z) < x̃z < x̃zmax(̃z)

}
.

Hence, our previous assumption x̃z < x̃zmax(̃z) ensures c = ϕ1(̃z, x̃z) ∈ intS.
With the conditions of Lemma 3 satisfied, we now show that (22) is equivalent to (23) for

any feasible pmax. A feasible design pmax satisfies (22) iff pmax ∈ arg maxq∈F E(q(x)(x2 −
k1x − k2)) for some k1, k2, or equivalently

pmax(x) =
{

1, x2 − k1x − k2 > 0,

0, x2 − k1x − k2 < 0,
(24)

(cf. part (ii) of Theorem 3.6.1 in Lehmann and Romano (2005)). If x2 − k1x − k2 has no
real roots, then pmax(x) = 1 for all x, contradicting z̃ < 1. Thus, we write x2 − k1x − k2 =
(x − a1)(x − a2) for some (real) a1 ≤ a2, showing that (24) is equivalent to (23). We can
now conclude, by the second claim in Lemma 3, that the set of optimal solutions to (19) con-
tains precisely those feasible designs satisfying (23). Furthermore, the first claim of Lemma 3
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ensures that such a design must exist. It remains to show only one feasible design can sat-
isfy (23); in Appendix B, we provide a direct argument, which does not rely on Lemma 3.

�

REMARK 4. The necessity and sufficiency results of Proposition 1 do follow from Corol-
lary 2.1 of Metelkina and Pronzato (2017). We again identify our design functions p with
their design measures ξ and take ψ(ξ) = ∫

x2 dξ(x), which can be written as an affine func-
tion �(·) of the expected information matrix I(ξ). As discussed at the beginning of this
section, however, the form of a solution to problem (4), cannot be constructed from their
corollary without the reduction to (19) and applying (20), so that ψ is as above rather than
something like D-optimality. We have also shown a stronger uniqueness result than Sec-
tion 2.3.3 of Metelkina and Pronzato (2017), which only applies when the running variable
distribution F has a density with respect to Lebesgue measure. Our Lemma 3 also provides
an existence guarantee that does not rely on strict concavity of �(·) on the set of positive
definite matrices; this is violated by the affine choice we need here.

As we will see in Section 5, when z̃ < 0 we frequently encounter popt = pmax under D-
optimality. In this case, it is intuitive that there is an efficiency advantage to strategically
allocate the rare level z = 1 at both high and low x, compared to a three-level tie-breaker. But
such a design is usually unacceptable in our motivating problems. We will thus constrain F
to the set of monotone design functions in Section 3.2.

Before doing that, we present an alternative solution to (4) assuming the running variable
distribution has an additional moment. This result shows that when the running variable is
continuous, an optimal design with no randomization always exists. However, randomized as-
signment becomes essential once we restrict our attention to monotone designs in Section 3.2,
as the only nonrandomized monotone designs are generalized RDDs (Remark 2).

THEOREM 1. Suppose E(|x|3) < ∞. Then when F is the set of all measurable design
functions, for any (̃z, x̃z) ∈ J there exists a solution to (4) with

popt(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, x < a1,

0, a1 < x < a2,

1, a2 < x < a3,

0, x > a3,

(25)

for some a1 ≤ a2 ≤ a3, which are finite unless popt is one of the designs pmax or pmin in (23).

PROOF. The solutions to (4) are precisely the feasible design functions p ∈ F where
Ep(x2z) is a solution to (17). Fix any such solution x̃2z

∗
(̃z, x̃z;�) to (17); it suffices to find

a feasible design popt with Epopt(x
2z) = x̃2z

∗
(̃z, x̃z;�). If x̃2z

∗
(̃z, x̃z;�) is the lower (resp.,

upper) endpoint of the interval IF (̃z, x̃z), then by Proposition 1, the unique feasible design
with Ep(x2z) = x̃2z

∗
(̃z, x̃z;�) is the design pmin (resp., pmax). Then the result follows with

a1 = −∞ (resp., a3 = ∞).
Otherwise, x̃2z

∗
(̃z, x̃z;�) is in the interior of IF (̃z, x̃z), and we aim to apply Lemma 3

with m = 3, hi(x) = xi for i ∈ {1,2,3}, and c = ϕ2(̃z, x̃z, x̃2z
∗
(̃z, x̃z;�)). With S′ closed

and convex as shown in Proposition 1, we only need to show c ∈ intS. With the interior of
IF (̃z, x̃z) being nonempty, there is more than one feasible design and the uniqueness result
of Lemma 1 indicates that we must have x̃z < x̃zmax(̃z). With z̃ ∈ (−1,1) by assumption and
x̃2z

∗
(̃z, x̃z;�) ∈ int IF (̃z, x̃z), indeed c ∈ intS.
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Applying Lemma 3, we know that there exists a feasible design popt with Epopt(x
2z) =

x̃2z
∗
(̃z, x̃z;�) and popt(x) ∈ arg maxq∈F E(q(x)(−x3 − k1x

2 − k2x − k3)) for some
k1, k2, k3. If f (x;k1, k2, k3) ≡ −x3 −k1x

2 −k2x −k3 had only one real root a1, then the neg-
ative leading coefficient indicates f (x;k1, k2, k3) > 0 when x < a1 and f (x;k1, k2, k3) < 0
when x > a1. This would imply popt(x) is a design that always treats all subjects with
x < a1 and never treats any subject with x > a1, which cannot be input-feasible. We con-
clude f (x;k1, k2, k3) = −(x − a1)(x − a2)(x − a3) for some finite a1 ≤ a2 ≤ a3, which are
the roots of f (x;k1, k2, k3). This shows the existence of popt of the form (25). �

3.2. Imposing a monotonicity constraint. We now apply Lemma 3 to solve (4) in the
case of principal interest, where F is the set of all monotone design functions. Note that the
lower bound x̃z ≥ 0 that we imposed in Section 2.2 does not exclude any monotone designs.
If p(x) is monotone, then x and z necessarily have a nonnegative covariance Ep(xz).

Our argument follows the outline of Section 3.1. Suppose that p†
max and p

†
min are solutions

to (19) with F the set of monotone design functions, which we distinguish from the optimal
designs pmax and pmin of Section 3.1. As F is convex, Lemma 2 applies, and thus a solution
p

†
opt to (4) is given by (20), replacing pmax and pmin by p†

max and p
†
min, respectively. Note

that x̃2z
∗
(̃z, x̃z) may differ from its value in Section 3.1 since F has changed.

We now characterize the designs p†
max and p

†
min. As in Proposition 1, these designs always

exist and are unique for any (̃z, x̃z) ∈ J . When F is continuous, these are monotone two-
level designs p†

max = p�,1,t and p
†
min = p0,u,s as defined in (7). For general F , the designs

p†
max and p

†
min may differ from these designs at at the single discontinuity.

PROPOSITION 2. For any (̃z, x̃z) ∈ J , there exist unique solutions p†
max and p

†
min to

the optimization problems (19), when F is the set of all monotone design functions. These
solutions are the unique feasible designs satisfying

p†
max(x) =

{
�, x < t,

1, x > t,
and p

†
min(x) =

{
0, x < s,

u, x > s,
(26)

for some �,u ∈ [0,1] and constants s, t , which all depend on (̃z, x̃z), where s and t may be
infinite if x̃z = 0.

PROOF. If x̃z = 0, the only feasible monotone design is the fully randomized design
p(x) = (1 + z̃)/2, and the theorem holds trivially with p†

max = p
†
min, t = −s = ∞ and � =

u = (1 + z̃)/2. Likewise, if x̃z = x̃zmax(̃z) then the desired results follow by Lemma 1 (take
� = 0, u = 1 and s = t with t as in Lemma 1). Thus, we assume that 0 < x̃z < x̃zmax(̃z).
Again, we only write out the argument for p†

max; the proof for p
†
min is completely analogous.

Once again, we are in the setting of Lemma 3 with m = 2, h1(x) = 1, h2(x) = x and
h3(x) = x2. The only difference from Proposition 1 is the definition of F , so we must
verify that the conditions on the corresponding S′ and S are satisfied. Since E(xap(x)) is
linear in p for all a, and any convex combination of monotone functions is monotone (cf.
Lemma 2), S′ is convex. Now suppose that c0 is a limit point of S′. Then there exists a se-
quence p1,p2, · · · ∈ F with (E(pn(x)),E(xpn(x)),E(x2pn(x))) → c0 as n → ∞. As F is
sequentially compact, there exists a subsequence pni

and p ∈ F with pni
→ p pointwise.

But then (E(p(x)),E(xp(x)),E(x2p(x))) = c0 by dominated convergence, so S′ is closed.
Finally, intS = ϕ1(T †) where

T † ≡ {
(̃z, x̃z)| − 1 < z̃ < 1,0 < x̃z < x̃zmax(̃z)

} = intJ .

Hence, the assumption that 0 < x̃z < x̃zmax(̃z) ensures that c = ϕ1(̃z, x̃z) ∈ intS.
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With the conditions of Lemma 3 once again satisfied, we now show that (22) is equivalent
to (26) for any (monotone) feasible p†

max. First, assume feasible p†
max satisfies (22), that is,

p†
max ∈ arg maxq∈F E(q(x)(x2 − k1x − k2)) for some k1, k2. The polynomial x2 − k1x − k2

having no real roots would mean this condition is equivalent to p†
max(x) = 1, contradicting

z̃ < 1. Hence, we can factor x2 − k1x − k2 = (x − r)(x − t) for some r ≤ t . Considering the
sign of (x − r)(x − t) and monotonicity of any q ∈ F , we see

E
(
q(x)(x − r)(x − t)

)
≤ E

(
q(r)(x − r)(x − t)1(x < r)

) +E
(
q(r)(x − r)(x − t)1(r ≤ x < t)

)
+E

(
(x − r)(x − t)1(x ≥ t)

)
.

This inequality is strict unless q(x) = 1 for almost every x > t and(
q(r) − q(x)

)
(x − r)(x − t)1(x < r) = (

q(x) − q(r)
)
(x − r)(x − t)1(r ≤ x < t) = 0

with probability one under F , that is, q(x) = q(r) = � for some � ∈ [0,1] and almost every
x < t . Therefore, any design in arg maxq∈F E(q(x)(x2 − k1x − k2)) must satisfy the first
condition in (26). Conversely, if a feasible, monotone p†

max satisfies (26) then let r1 ≤ t be
such that g(r1) = E((x − r1)(x − t)1(x < t)) = 0. Such r1 exists since assuming WLOG
that Pr(x < t) > 0, g(·) is continuous on (−∞, t] with −∞ = limk1↓−∞ g(k1) < 0 ≤ g(t).
Considering the signs of (x − r1)(x − t), we get for any p ∈ F ,

E
((

p†
max(x) − p(x)

)
(x − r1)(x − t)

)
= E

((
1 − p(x)

)
(x − r1)(x − t)1(x ≥ t)

)
+E

((
� − p(x)

)
(x − r1)(x − t)1(x < t)

)
≥ E

((
1 − p(x)

)
(x − r1)(x − t)1(x ≥ t)

) + (
� − p(r1)

)
g(r1)

= E
((

1 − p(x)
)
(x − r1)(x − t)1(x ≥ t)

) ≥ 0

and so p†
max satisfies (22) with k1 = r1 + t , and k2 = −tr1. The second claim in Lemma 3

then ensures that the set of optimal solutions to (19) consists of precisely those feasible,
monotone designs satisfying (26). Such a design must exist by the first claim of Lemma 3.
The remaining uniqueness claims are shown in Appendix C. �

Analogous to Theorem 1, if we assume the running variable has a third moment then we
have a solution to (4) of a simpler form than (20). When the running variable x is continuous,
this solution will be a two-level design p�′,u′,t ′ for some 0 ≤ �′ ≤ u′ ≤ 1. In general, when x

is not continuous, we may need a different treatment probability at the discontinuity t ′.

THEOREM 2. Suppose E(|x|3) < ∞. Then when F is the set of all monotone design
functions, for any (̃z, x̃z) ∈ J there exists a solution to (4) with

p
†
opt(x) =

{
�′, x < t ′,
u′, x > t ′,

(27)

for some 0 ≤ �′ ≤ u′ ≤ 1 and t ′ ∈R.

PROOF. The proof structure is similar to that of Theorem 1. Fix any solution x̃2z
∗
(̃z, x̃z;

�) to (17). If it is an endpoint of IF (̃z, x̃z), then the unique solution to (4) is p†
max

or p
†
min from Proposition 2, which takes the form (27) with u′ = 1 or �′ = 0, respec-

tively. Otherwise, we apply Lemma 3 with m = 3, hi(x) = xi for i ∈ {1,2,3}, and c =
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ϕ2(̃z, x̃z, x̃2z
∗
(̃z, x̃z;�)). The lemma applies since S′ is closed and convex from the proof of

Proposition 2, and c ∈ intS since our assumption that x̃2z
∗
(̃z, x̃z;�) ∈ int IF (̃z, x̃z) indicates

there is more than one feasible design, so 0 < x̃z < x̃zmax(̃z).
Applying Lemma 3, we see that there exists a design p

†
opt that solves (4) with p

†
opt ∈

arg maxq∈F E(q(x)f (x;k1, k2, k3)) for some k1, k2, k3. Here, as in the proof of Theorem 1,
f (x) = f (x;k1, k2, k3) := −(x3 + k1x

2 + k2x + k3). We show this implies this particular
solution p

†
opt is of the form (27) using the following claim.

Claim: Suppose sign(f (x)) = 1(x < a) − 1(x > a) w.p.1 for some a ∈ R and F is the
set of monotone design functions. Then p ∈ arg maxq∈F E(q(x)f (x)) implies p(x) = p(a)

w.p.1.
Proof of claim: For any monotone design p, we can define p̃(x) = min(p(x),p(a)) so that

E(
(
p̃(x) − p(x)

)
f (x) = E

((
p̃(x) − p(x)

)
f (x)1(x ≥ a)

)
= −E

((
p(x) − p(a)

)
f (x)1(x ≥ a)

)
is nonnegative, and zero iff p(x) = p(a) for almost all x ≥ a. Similarly, by considering
p̃(x) = max(p(x),p(a)), we conclude p(x) = p(a) for almost all x < a.

We notice that f has either one real root a1 or three real roots a1, a2, a3. If a1 is the only
root, we know f (x) < 0 when x > a1 and f (x) > 0 when x < a1, since the leading coeffi-
cient of f is negative. Thus, we can apply the claim directly to show that p

†
opt is constant, in

particular of the form (27) with �′ = u′. If there are three real roots, we show p
†
opt is of this

form with t ′ = a2. Let F< (F>) be the conditional distribution of x given x < a2 (x > a2), so

EF

(
q(x)f (x)

) = EF<

(
q(x)f (x)

)
Pr(x < a2) +EF>

(
q(x)f (x)

)
Pr(x > a2).

We conclude the condition p
†
opt ∈ arg maxq∈F EF (q(x)f (x;k1, k2, k3)) implies p

†
opt(x) =

p
†
opt(a1) for almost all x < a2 and p

†
opt(x) = p

†
opt(a3) for almost all x > a2 by applying the

claim twice (once for F<, once for F>). �

In general, the optimal designs derived in Theorems 1 and 2 are not unique when
x̃2z

∗
(̃z, x̃z,�) is not on the boundary of IF (̃z, x̃z). For example, in nondegenerate cases

the solution p
†
opt in (27) typically has two levels, while the solution in (20) (with the mono-

tonicity constraint) will have three levels. As another example, the three-level tie-breaker
found by Owen and Varian (2020) to be optimal when F is uniform and z̃ = 0 does not take
the form (25) whenever x̃z < x̃zmax(0). Conversely, Propositions 1 and 2 guarantee a unique
optimal design when x̃2z

∗
(̃z, x̃z,�) is one of the endpoints of IF (̃z, x̃z).

4. Exploration-exploitation trade-off. As discussed in Section 1, Owen and Varian
(2020) showed that when z̃ = 0 and F ∼ U(−1,1), the efficiency (under their criterion Eff(·))
of the three-level tie-breaker (8) is monotonically increasing in the width � of the random-
ization window. As � is a strictly decreasing function of x̃z, and the three-level tie-breaker
solves (4) for all x̃z, they conclude that there is a monotone trade-off between short-term gain
and statistical efficiency. In other words, greater statistical efficiency from an optimal design
requires giving up short-term gain.

We now extend these results to general z̃ and other running variable distributions. Here-
after, popt = popt;̃z,x̃z denotes an optimal design without the monotonicity constraint, to be

contrasted with p
†
opt of Section 3.2. Note we have made the dependence of these designs on

(̃z, x̃z) ∈ J explicit. We use the same efficiency criterion Eff(·) as Owen and Varian (2020).
Recall this is a c-optimality criterion corresponding to the scaled asymptotic variance of the
OLS estimate for β3 in (1), and equivalent to D-optimality for our problem (4) by Section 2.3.
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THEOREM 3. Suppose the distribution function F of the running variable has a positive
derivative everywhere in I , the smallest open interval with

∫
I f (x)dx = 1. If additionally

F(x) = 1 − F(−x), ∀x ∈ I , then fixing any z̃ ∈ (−1,1), Eff(popt;̃z,x̃z) is decreasing in x̃z.

PROOF. See Appendix D. �

It turns out, however, that the gain versus efficiency trade-off is no longer monotone un-
der the monotonicity constraint. Indeed, our next theorem shows that whenever z̃ �= 0, if F

is symmetric (or indeed, not extremely skewed), the fully randomized design pθ,θ,0 is inad-
missible for any θ �= 1/2, in the sense that there exists a different monotone design p with
Ep(z) = z̃ but both Eff(p) > Eff(pθ,θ,0) and Ep(xz) > Epθ,θ,0(xz). In other words, the RCT
is no longer admissible under Eff(·) when z̃ �= 0.

THEOREM 4. Fix z̃ ∈ (−1,1) \ {0}, and assume F satisfies the conditions of Theorem 3.
If z̃ < 0, assume that E(x2) < F−1(1)2; otherwise, assume that E(x2) < F−1(0)2. Here,
F−1(1) ≡ sup I and F−1(0) ≡ inf I . Let p1 = pθ,θ,0 be the fully randomized monotone de-
sign with Ep1(z) = z̃, so that θ = (1 + z̃)/2. Then there exists a monotone design p2 such
that Ep2(z) = z̃ yet both Eff(p2) > Eff(p1) and Ep2(xz) > 0 = Ep1(xz).

PROOF. See Appendix E. �

5. Examples. In this section, we compute the optimal exploration-exploitation trade-off
curves investigated in Section 4 for several specific running variable distributions F . We can
obtain large gains in efficiency under the criterion Eff(·) defined in Section 2.3 by moving
away from the three-level tie-breaker design to p

†
opt, without sacrificing short-term gain. We

see further (generally smaller) improvements when we remove the monotonicity constraint
and move from p

†
opt to popt.

To generate these curves, we compute optimal designs popt;̃z,x̃z and p
†
opt;̃z,x̃z and evaluate

their efficiency for various fixed z̃ ∈ (−1,1) as we vary the short-term gain constraint x̃z over
a fine grid covering [0, x̃zmax(̃z)]. For interpretability, we write x̃z = δ · x̃zmax(̃z) and specify
short-term gain with the normalized parameter δ ∈ [0,1], as discussed in Section 2.2. When
F is continuous, solutions popt and p

†
opt to (4) are computed by noting that we can write

pmax = p[a1,a2]c , pmin = p[b1,b2], p†
max = p�,1,t and p

†
min = p0,u,s by Propositions 1 and 2.

Each of these designs has two unknown parameters that must be the unique solutions to the
two feasibility constraints Ep(z) = z̃ and Ep(xz) = x̃z. Given these parameters, we can ap-
ply (20) to compute popt and p

†
opt. We could also get an optimal design of the form (25) when

popt /∈ {pmax,pmin}. First, we compute x̃2z
∗
(̃z, x̃z;Eff) via (17), noting that the endpoints of

IF (̃z, x̃z) are Epmin (̃z,x̃z(x
2z) and Epmax (̃z,x̃z)(x

2z). Then (17) is simply maximizing a contin-
uous function over a closed interval, so it can be handled by standard methods such as Brent’s
algorithm (Brent (1973)). Given x̃2z

∗
(̃z, x̃z;Eff), we can then numerically search for a1, a2,

a3 such that popt = 1(x ≤ a1)+1(a2 ≤ x ≤ a3) is feasible with Epopt(x
2z) = x̃2z

∗
(̃z, x̃z;Eff).

By Theorem 1, such a solution will exist and be optimal. We can do a similar search for a
two-level optimal monotone design p

†
opt based on Theorem 2.

5.1. Uniform running variable. We begin with the case F ∼ U(−1,1). This is the dis-
tribution most extensively studied by Owen and Varian (2020), and allows closed form ex-
pressions for the parameters in pmax, pmin, p†

max and p
†
min, given in Table 1. Figure 1 shows
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TABLE 1
A list of the parameters for the various designs considered in Section 5, for fixed (̃z, x̃z) ∈ J , when

F ∼U(−1,1). The values for � are only valid if they are between 0 and min((1 − z̃)/2, (1 + z̃)/2), inclusive.
Otherwise, there is no feasible three-level tie-breaker design

Design Parameter Value

p3;̃z,� � 2(1 − z̃2 − 2x̃z)1/2

pmax;̃z,x̃z a1 −x̃z/(1 − z̃) − (1 − z̃)/2
a2 −x̃z/(1 − z̃) + (1 − z̃)/2

pmin;̃z,x̃z b1 x̃z/(1 + z̃) − (1 + z̃)/2
b2 x̃z/(1 + z̃) + (1 + z̃)/2

p
†
max;̃z,x̃z

� (1/2)(1 − z̃2 − 2x̃z)/(1 − z̃ − x̃z)

t 1 − 2x̃z/(1 − z̃)

p
†
min;̃z,x̃z

u (1/2)(1 + z)2/(1 + z̃ − x̃z)

s 2x̃z/(1 + z̃) − 1

plots of Eff(p)−1 versus x̃z for z̃ ∈ {0,−0.2,−0.5,−0.7} under different designs: the three-
level tie-breaker p3;̃z,�, a globally optimal design popt;̃z,x̃z and an optimal monotone design

p
†
opt;̃z,x̃z. Since F is symmetric, the curves would be identical if z̃ were replaced with −z̃.
As shown in Owen and Varian (2020), under the constraint z̃ = 0 the three-level tie-breaker

is optimal for all δ, and thus the three-level tie-breaker, popt and p
†
opt all attain the optimal

efficiency, as can be seen in the top left panel of Figure 1. The proof of Theorem 3 shows
this would hold for any continuous, symmetric running variable distribution F . As z̃ moves
away from 0, however, we see that the three-level tie-breaker becomes increasingly less effi-
cient relative to both the optimal monotone design and the optimal design. At the same time,
the range of short-term gain values x̃z attainable by three-level tie-breaker designs becomes
smaller relative to the full range achievable by arbitrary designs. Accordingly, the inverse
efficiency curves for short-term gain do not extend over the full range of δ values. Note that
Figure 1 plots the reciprocal of the efficiency criterion Eff(·), so that it can be interpreted as
an asymptotic (conditional) variance for β̂3 via (15), and compared with Owen and Varian
(2020).

FIG. 1. Left four plots: The inverse efficiencies of the three-level tie-breaker p3;̃z,�, the optimal designs popt in

Section 3.1 and the optimal monotone designs p
†
opt in Section 3.2 as a function of the normalized short-term gain

parameter δ for fixed z̃ ∈ {0,−0.2,−0.5,−0.7}, when F ∼U(−1,1). When z̃ = 0, all three curves coincide. Note
the logarithmic vertical spacing for the bottom two plots. Right four plots: The value of Ep(x2z) for the designs
p in the left four plots.
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TABLE 2
An extension of Table 2 in Owen and Varian (2020), showing how popt and p

†
opt can greatly increase efficiency

without sacrificing short-term gain, compared to a three-level tie-breaker. All designs p in this table satisfy
Ep(z) = −0.7 and assume F ∼U(−1,1)

Design p Description Normalized short-term gain δ Eff(p)−1

p0,1,0.7 Sharp RDD 1.000 223.44
p3;−0.7,� 3-level tie-breaker 0.980 137.56

p
†
opt;−0.7,0.25 Optimal monotone design 0.980 54.90

popt;−0.7,0.25 Optimal design 0.980 42.37

Table 2 extends Table 2 of Owen and Varian (2020), referring to a setting in which only
15% of subjects are to be treated (̃z = −0.7). That table shows the inverse efficiency of the
sharp RDD p0,1,0.7 is 223.44, while the three-level tie-breaker p3;−0.7,0.05 reduces this by
about 40% to 137.56, at the cost of around 2% of the short-term gain of the sharp RDD over
the RCT. Then Eff(p†

opt)
−1 = 54.90 and Eff(popt)

−1 = 42.37, further improving efficiency

for designs popt and p
†
opt achieving the same short-term gain as the three-level tie-breaker.

For this example, we can directly compute with (31) that p
†
opt;−0.7,0.25 = p

†
max;−0.7,−0.25 =

p�,1,t is the unique optimal monotone design, where by Table 1, � = 0.0034 and t = 0.7059.
In other words, the unique optimal monotone tie-breaker design deterministically assigns
treatment to the top 14.7%, and gives the other subjects an equal, small (0.34%) chance of
treatment.

A limitation of this analysis is that in many practical settings, the two line regression model
will not fit very well over the entire range of x values. In that case, the investigator might use
a narrower data range, essentially fitting a less asymmetric two line model, as illustrated in
Owen and Varian (2020). This is equivalent to using a local linear regression with a rect-
angular “boxcar” kernel. In this setting, we know from Figure 1 that when the treatment
proportion is not exactly 50%, we can always do better than the three-level tie-breaker us-
ing monotone two-level design. Even with a small asymmetry, for example, 40% treatment
(̃z = −0.2), we see a noticeable efficiency increase between the three-level tie-breaker and
an optimal monotone design across all values of δ. Recalling that efficiency of a design p

is a univariate function of Ep(x2z) under the treatment fraction and gain constraints, we see
from the top right plot in Figure 1 that we lose no efficiency by imposing the monotonicity
constraint when 0.3 < δ < 0.8.

Finally, consistent with the results of Section 4, we observe in Figure 1 that Eff(popt)

decreases with the gain parameter δ for each z̃, while near δ = 0, Eff(p†
opt) increases with

δ for all z̃ �= 0. This clearly demonstrates the inadmissibility of the fully randomized design
from Theorem 4. For example, if we fix z̃ = −0.5 (so 25% of the subjects are to be treated),
the fully randomized design p0.25,0.25,0 = p

†
opt;−0.5,0 has efficiency 0.25 and no short-term

gain (δ = 0), while p
†
opt;−0.5,0.1 has higher efficiency (0.28) with short-term gain δ = 0.27 >

0. However, if we remove the monotonicity constraint, by Theorem 3 popt;−0.5,0 is the most
efficient design over all attainable gain values, attaining efficiency 0.33 with δ = 0.

5.2. Skewed running variable. We now repeat the analysis of Section 5.1 for a skewed
running variable distribution F :

F(x) = 1 − exp(−√
x + 2)(28)
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FIG. 2. Same as Figure 1, except for the case where F is a centered Weibull distribution (28).

for x ∈ (−2,∞) = I . This corresponds to a mean-centered Weibull distribution with shape
parameter 0.5 and scale parameter 1. Figure 2 shows the trade-off curves under this distribu-
tion F . We see, as expected by Theorem 4, that once again the fully randomized design is
inadmissible, even within the class of monotone designs, when z̃ �= 0.

Another notable feature when F is not symmetric is that the three-level tie-breaker is no
longer optimal, even in the balanced case z̃ = 0. While the unconstrained optimal design
attains the lower bound E(x2z) = x̃2z

∗
(0, x̃z;Eff) = 0 for a wide range of short-term gains,

the right-hand side of Figure 2 shows the three-level tie-breaker does not, except in the case
z̃ = x̃z = 0 corresponding to the RCT. In Figure 2, we see the optimal design is over 100 times
as efficient as the three-level tie-breaker for sufficiently large δ, even in the balanced setting
z̃ = 0. In the unbalanced treatment cases, we also see a range of values for which optimal
designs with and without the monotonicity constraint attain the same value of E(x2z). In
those situations, there exists a globally optimal design that is also monotone.

5.3. Fixed-x data example. We now illustrate how to compute optimal designs for the
original fixed-x problem (3) using a real data example. Ludwig and Miller (2007) used an
RDD to analyze the impact of Head Start, a U.S. government program launched in 1965 that
provides benefits such as preschool and health services to children in low-income families.
When the program was launched, extra grant-writing assistance was provided to the 300
counties with the highest poverty rates in the country. This created a natural discontinuity in
the amount of funding to counties as a function of x, a county poverty index based on the
1960 U.S. Census. The distribution of x over n = 2,804 counties is shown in Figure 3. The
data is made freely available by Cattaneo, Titiunik and Vazquez-Bare (2017).

If the government had deemed it ethical to somewhat randomize the 300 counties receiving
the grant-writing assistance, it could have more efficiently estimated the causal impact of this
assistance using our p

†
opt, while still ensuring poorer counties are preferentially helped, and

no county has a lower chance of getting the assistance than a more well-off county. As in
the data example of Kluger and Owen (2023), we do not observe the potential outcomes,
so we cannot actually implement such a design and compute any estimators. However, we
can still study statistical efficiencies, which depend only on the expected information matrix
I .

We fix the treatment fraction at 300/2804, corresponding to z̃ ≈ −0.79. Varying the short-
term gain constraint x̃z, we seek to compute p

†
max;̃z,x̃z and p

†
min;̃z,x̃z. We describe how to

compute the former. Because F is discrete, it suffices to only consider discontinuity points
t ∈ {x1, . . . , xn} where F places positive probability mass, as every design of the form of p†

max
in (26) has a representation in that form with such t . Also, given the values of the discontinuity
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FIG. 3. Left: A histogram of the mean-centered poverty index x for n = 2,804 counties used to determine el-
igibility for additional grant-writing assistance in the Head Start program. The dotted vertical line indicates
the eligibility threshold. Right: The exploration-exploitation trade-offs for the Head Start data, comparing the
three-level tie-breaker with the optimal monotone two-level design. The curves intersect at the value Eff−1 of the
RDD.

t and p(t) = ε, there is at most one value � = �(t, ε) ∈ [0,1] such that the resulting design p

in the form of p†
max in (26) satisfies the treatment fraction constraint Ep(z) = z̃. When such an

� exists for some (t, ε), call the corresponding design p(t,ε) (note we suppress the dependence
on z̃). From Appendix C, we deduce that Ep(t,ε)(xz) < E

p(t ′,ε′) (xz) and �(t, ε) > �(t ′, ε′) if
t > t ′, or if t = t ′ and p(t) < p′(t). This shows we can efficiently find the unique (t, ε) so
that p(t,ε) satisfies the desired short-term gain constraint Ep(t,ε)(xz) = x̃z. In particular, we
compute t = max{s ∈ {x1, . . . , xn}|Ep(s,1) (xz) ≥ x̃z} via a binary search on {x1, . . . , xn}, then
solve for ε to satisfy Ep(t,ε)(xz) = x̃z. Given sorted x, this entire procedure computes p†

max in
O(n) operations, as for each (t, ε), �(t, ε) and Ep(t,ε)(xz) can be computed in constant time
using (5) given the partial sums {∑m

i=1 xi}nm=1.

After computing p
†
min with a similar approach, we can apply (20) to compute an optimal

design p
†
opt. As in the continuous case, we can alternately obtain a solution p

†
opt of the form

in Theorem 2 by finding �′, u′, t ′ and ε′ such that Ep(z) = z̃, Ep(xz) = x̃z, and Ep(x2z) =
x̃2z

∗
(̃z, x̃z;Eff) for p(x) ≡ �′1(x < t ′)+ ε′1(x = t ′)+1(x > t ′). Unlike the continuous case,

we now have 4 unknown parameters instead of 3. We can search for an optimal set of these
parameters by looping through the finite possible values of t ′ and then doing a univariate
search for ε′, noting that knowledge of t ′ and ε′ determines �′ and u′ by the equality constraint
parameters z̃, x̃z). We implemented this search, along with the procedure to compute p†

max

and p
†
min described above, in the R language (R Core Team (2022)). See https://github.com/

hli90722/optimal_tiebreaker_designs.
The right panel of Figure 3 shows the inverse efficiency for the three-level tie-breaker (9)

versus the best two-level monotone design obtained by applying the above procedure to the xi

in the Head Start data. It turns out that for these xi and our choice of z̃, p†
max is optimal for all

x̃z (and hence the unique optimal design, by Proposition 2). We note that with a normalized
short-term gain δ ≈ 0.958, which corresponds to random assignment for about 150 counties
in the three-level tie-breaker, the optimal monotone two-level design has inverse efficiency
0.030, compared to 0.050 for the three-level tie-breaker. That is, confidence intervals for β3

using the three-level tie-breaker would be about 29% wider than for the optimal monotone
two-level design, without additional short-term gain. The sharp RDD would give 62% wider
intervals than the optimal monotone two-level design with only about 4.2% additional short-
term gain.

https://github.com/hli90722/optimal_tiebreaker_designs
https://github.com/hli90722/optimal_tiebreaker_designs
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6. Summary. Our results provide a thorough characterization of the solutions to a con-
strained optimal experiment design problem. Considering a linear regression model for a
scalar outcome involving a binary treatment assignment indicator z, a scalar running variable
x and their interaction, we seek to specify a randomized treatment assignment scheme based
on x—a tie-breaker design—that optimizes a statistical efficiency criterion that is an arbi-
trary continuous function of the expected information matrix under this regression model.
We have equality constraints on the proportion of subjects receiving treatment due to an ex-
ternal budget, and on the covariance between x and z due to a preference for treating subjects
with higher values of x. Critically, our proof techniques, which deviate from those typically
used to show equivalence theorems, enable an additional monotonicity constraint. This al-
lows our results to handle the ethical or economic requirement that a subject cannot have a
lower chance of receiving the treatment than another subject with a lower value of x.

In a setting where the running variable x is viewed as random from some distribution F —
and thus part of the randomness in the expected information matrix defining the efficiency
criterion—we prove the existence of constrained optimal designs that stratify x into a small
number of intervals and assign treatment with the same probability to all individuals within
each stratum. In particular, with the monotonicity constraint that is essential in our moti-
vating applications, we only need three strata, one of which only contains a single running
variable value. We also provide strong conditions on which the optimal tie-breaker design
is unique. We emphasize the generality of our results, which apply for any continuous effi-
ciency criterion, any running variable distribution F (subject only to weak moment existence
conditions), and the full range of feasible equality constraints. The problem an investigator
faces in practice, where there are a finite number of running variable values x1, . . . , xn known
(hence nonrandom) at the time of treatment assignment, is a special case of our more gen-
eral problem where F is discrete and takes on values x1, . . . , xn with equal probability. This
enables optimal designs to be easily computed in practice, as described in Section 5.3.

We believe that this work provides a useful starting point to study optimal tie-breaker
designs. For results on tie-breaker designs beyond the two line parametric regression, see
Morrison and Owen (2022) for a multivariate regression context and Kluger and Owen (2023)
for local linear regression models with a scalar running variable.

APPENDIX A: PROOF OF COROLLARY 1

For any z̃ ∈ (−1,1), we have x̃zmax(̃z) = Epz̃(xz) = 2E(xpz̃(x)) where pz̃ is as in
Lemma 1. The desired condition M11 > 0 is equivalent to (x̃z)2 < E(x2)(1 − z̃2) and so
it suffices to show E(xpz̃(x))2 < E(x2)((1 + z̃)/2)((1 − z̃)/2).

Applying Cauchy–Schwarz to xpz̃(x)1/2 × pz̃(x)1/2 and then x(1 − pz̃(x))1/2 × (1 −
pz̃(x))1/2 yields the two equations

E
(
xpz̃(x)

)2
< E

(
x2pz̃(x)

)(1 + z̃

2

)
,

E
(
xpz̃(x)

)2 = E
(
x
(
1 − pz̃(x)

))2
< E

(
x2(

1 − pz̃(x)
))(1 − z̃

2

)
,

where we have used the fact E(xpz̃(x)) = −E(x(1 − pz̃(x))) since E(x) = 0. Note both in-
equalities are strict, since x cannot equal a scalar multiple of pz̃(x) w.p.1. If it did, then
E(kpz̃(x) − x) = k(1 + z̃)/2 = 0 for some k, implying k = 0, and hence x = 0 w.p.1, con-
tradicting Var(x) > 0. As E(x2) = E(x2pz̃(x)) + E(x2(1 − pz̃(x))), we know that either
E(x2pz̃(x)) ≤ E(x2) · (1 − z̃)/2 or E(x2(1 − pz̃(x))) ≤ E(x2) · (1 + z̃)/2. �
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APPENDIX B: PROOF OF UNIQUENESS IN PROPOSITION 1

We show uniqueness for pmin. The same argument shows uniqueness for 1 − pmax, and
hence uniqueness for pmax. Suppose that p(x) = δ11(x = b1)+1(b1 < x < b2)+δ21(x = b2)

and p′(x) = δ′
11(x = b′

1) + 1(b′
1 < x < b′

2) + δ′
21(x = b′

2) are both solutions for pmin. By
symmetry, we can assume that either b1 < b′

1, or both b1 = b′
1 and δ1 ≤ δ′

1. Since p and
p′ are feasible for (19), we must have E(p(x) − p′(x)) = 0 and E(x(p(x) − p′(x))) = 0,
in view of (5). We show that p(x) = p′(x) w.p.1. under x ∼ F . Note that we can assume
without loss of generality that Pr(x ∈ [b1, b1 + ε)) > 0 for any ε > 0, because otherwise, we
could increase b1 to b1 + sup{ε > 0|Pr(x ∈ [b1, b1 + ε)) = 0} without changing p on a set
of positive probability. We can similarly assume that Pr(x ∈ (b2 − ε, b2]) > 0 for any ε > 0.
Finally, we impose these two canonicalizing conditions on b′

1 and b′
2 as well.

Assume first that b2 > b1. Then we cannot have b′
1 > b1 because we would then need

either b′
2 > b2 or b′

2 = b2 with δ′
2 > δ2 and Pr(x = b2) > 0 to enforce E(p(x) − p′(x)) = 0

and this would cause E(x(p(x) − p′(x))) < 0. We similarly cannot have b′
1 = b1 with both

δ′
1 > δ1 and Pr(x = b1) > 0. Therefore, after canonicalizing, we know that both p and p′ are

equivalent to designs of the form given with b1 = b′
1 and δ1 = δ′

1 along with the analogous
conditions b2 = b′

2 and δ2 = δ′
2. Then our canonicalized p and p′ satisfy p(x) = p′(x) for all

x and so in particular Pr(p(x) = p′(x)) = 1.
It remains to handle the case where b1 = b2. We then have Pr(x = b1) > 0 since z̃ > −1.

If b′
1 > b1, then the support of p′ is completely to the right of that of p, which violates

E(x(p(x) − p′(x))) = 0. We can similarly rule out b′
2 < b2. As a result, p′ must have b′

1 ≤
b1 = b2 ≤ b′

2. Then we must have δ′
1 Pr(x = b′

1) + Pr(b′
1 < x < b1) = 0 or else E(p′(x) −

p(x)) > 0. For the same reason, we must have Pr(b2 < x < b′
2) + δ′

2 Pr(x = b′
2) = 0. It then

follows that both p and p′ have support {b1} and then E(p(x)) = E(p′(x)) = (1+ z̃)/2 forces
(1 + z̃)/(2 Pr(x = b1)) = δ1 = p(b1) = p′(b1) = δ′

1, so Pr(p(x) = p′(x)) = 1.

APPENDIX C: PROOF OF UNIQUENESS IN PROPOSITION 2

We focus on p†
max and consider two monotone designs p and p′ satisfying the feasibility

constraints Ep(z) = Ep′(z) = z̃ and Ep(xz) = Ep′(xz) = x̃z along with the characterization
of p†

max in (26). Then p(x) = �1(x < t) + δ1(x = t) + 1(x > t) and p′(x) = �′1(x < t ′) +
δ′1(x = t ′) + 1(x > t ′) for some �, �′ ∈ (0,1) with � ≤ δ ≤ 1 and �′ ≤ δ′ ≤ 1. Note the cases
� ∈ {0,1} (and the same for �′) are excluded by the assumptions that x̃z < x̃zmax(̃z) and
z̃ < 1. Also, z̃ < 1 also guarantees min(Pr(x ≤ t),Pr(x ≤ t ′)) > 0. Finally, we note that we
only have to show p(x) = p′(x) for almost all x �= t , since then E(p(x)−p′(x)) = 0 ensures
either p(t) = p′(t) or Pr(x = t) = 0; in either case, this gives p = p′ w.p.1. By symmetry, we
can assume that t ≤ t ′ with δ ≡ p(t) ≥ p(t ′) =: δ′ if t = t ′. Then p(x) = p′(x) for all x > t ′.

Now we compute

E
(
x
(
p(x) − p′(x)

))
= E

(
(x − t)

(
p(x) − p′(x)

))
since E

(
p(x)

) = E
(
p′(x)

)
= E

(
(t − x)

(
p′(x) − p(x)

)
1(x < t)

) +E
(
(x − t)

(
p(x) − p′(x)

)
1
(
t < x ≤ t ′

))
= (

�′ − �
)
E

(
(t − x)1(x < t)

) +E
(
(x − t)

(
1 − p′(x)

)
1
(
t < x ≤ t ′

))
.

If t = t ′, then the right-hand side reduces to just (�′ −�)E((t −x)1(x < t)). This is nonzero
unless Pr(x < t) = 0 or � = �′. In both cases, p(x) = p′(x) for almost all x �= t .

If t < t ′, then we can assume Pr(t < x ≤ t ′) > 0 (otherwise the problem reduces to the
case t = t ′). First, suppose � ≥ �′. Then p(x) ≥ p′(x) for all x and so the treatment fraction
constraint would require the identity

1
(
t < x ≤ t ′

) = p(x)1
(
t < x ≤ t ′

) ≥ p′(x)1
(
t < x ≤ t ′

) = δ′1
(
x = t ′

) + �′1
(
t < x < t ′

)
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to hold with equality w.p.1. But since �′ < 1, equality w.p.1. can only occur if Pr(t < x <

t ′) = 0 and δ′ = 1. In that case, we immediately see p(x) = p′(x) for almost all x > t , but
0 = E(x(p(x)−p′(x))) = (�′ −�)E((t −x)1(x < t)) so p(x) = p′(x) for almost all x < t as
well. Conversely, if we suppose � < �′, then E(x(p(x) − p′(x))) = 0 requires Pr(x < t) = 0
and p′(x) = 1 for almost all x ∈ (t, t ′], so once again p(x) = p′(x) for almost all x �= t .

APPENDIX D: PROOF OF THEOREM 3

For any feasible design p, we have

det(M) = −(1 − z̃2) · (Ep(x2z))2

E(x2)
− 2̃z(x̃z)2 ·Ep(x2z)

E(x2)
+E

(
x2)(

1 − z̃2)
+ (x̃z)2

(
(x̃z)2

E(x2)
− 2

)
,

(29)

where M = M(p) as in (16). Thus, det(M(p)) is a concave quadratic function of Ep(x2z)

globally maximized at

a∗(̃z, x̃z) ≡ − z̃ · (x̃z)2

1 − z̃2 .(30)

It follows that x̃2z
∗
(̃z, x̃z;Eff) is the point in IF (̃z, x̃z) = [IF;min(̃z, x̃z), IF;max(̃z, x̃z)] clos-

est in absolute value to a∗(̃z, x̃z), that is,

x̃2z
∗
(̃z, x̃z;Eff) =

⎧⎪⎪⎨⎪⎪⎩
IF;min(̃z, x̃z), a∗(̃z, x̃z) ≤ IF;min(̃z, x̃z),

a∗(̃z, x̃z), IF;min(̃z, x̃z) < a∗(̃z, x̃z) < IF;max(̃z, x̃z),

IF;max(̃z, x̃z), a∗(̃z, x̃z) ≥ IF;max(̃z, x̃z).

(31)

The above holds for any choice of F ; for the remainder of this proof we take F to be the set
of all measurable design functions.

We first show the case where z̃ = 0. Note that Ep(x2z) = 0 = a∗(0, x̃z) for any sym-
metric design p, by symmetry of the running variable distribution. By continuity, for any
x̃z ∈ [0, x̃zmax(̃z)] there exists � ∈ [0,∞] such that the three-level tie-breaker p3;̃z,� (which
is symmetric and always satisfies Ep3;̃z,�(z) = 0) satisfies Ep3;̃z,�(xz) = x̃z, too. This shows

that for all x̃z ∈ [0, x̃zmax(̃z)], 0 ∈ IF (̃z, x̃z), and hence x̃2z
∗
(0, x̃z;Eff) = 0, meaning any

feasible design p with Ep(x2z) = 0 is optimal. Then by (29),

det
(
M(popt;0,x̃z)

) = E
(
x2) + (x̃z)2

(
(x̃z)2

E(x2)
− 2

)
,

which is decreasing in x̃z on [0, x̃zmax(̃z)], showing the theorem for z̃ = 0.
For the cases z̃ < 0 and z̃ > 0, we begin with the two following claims.

CLAIM 1. For any (̃z, x̃z) ∈ J with z̃ < 0, we have IF;min(̃z, x̃z) ≤ 0 < a∗(̃z, x̃z).

CLAIM 2. For any (̃z, x̃z) ∈ J with z̃ > 0, we have IF;max(̃z, x̃z) ≥ 0 > a∗(̃z, x̃z).

PROOF OF CLAIMS 1 AND 2. We write IF;min(̃z, x̃z) = 2E(x2pmin;̃z,x̃z(x))−E(x2) and
similarly rewrite IF;max(̃z, x̃z). For claim 1, we proceed by writing pmin = p[b1,b2] by Propo-
sition 1 (suppressing the dependence of b1 and b2 on (̃z, x̃z) in our notation) and performing
casework on the signs of b1 and b2 to show that E(x2pmin(x)) ≤ E(x2)/2 in each case. In
the case b1 ≤ b2 ≤ 0, we have E(x2pmin(x)) ≤ E(x21(x ≤ 0)) = E(x2)/2 by symmetry;
similarly, if b2 ≥ b1 ≥ 0 then E(x2pmin(x)) ≤ E(x21(x ≥ 0)) = E(x2)/2. Next, if b1 ≤ 0 ≤
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−b1 ≤ b2 then F(b2) + F(0) − F(b1) = Pr(b1 < x ≤ b2) + 1/2 = E(pmin(x)) + 1/2 < 1
since z̃ < 0 implies E(p(x)) < 1/2 by (5). Therefore,

E
(
x2pmin(x)

) = E
(
x21(b1 ≤ x ≤ 0)

) +E
(
x21(0 ≤ x ≤ b2)

)
≤ b2

2 Pr(b1 ≤ x ≤ 0) +E
(
x21(0 ≤ x ≤ b2)

)
= b2

2 Pr
(
b2 ≤ x ≤ F−1(

F(b2) + F(0) − F(b1)
)) +E

(
x21(0 ≤ x ≤ b2)

)
≤ E

(
x21

(
0 ≤ x ≤ F−1(

F(b2) + F(0) − F(b1)
))) ≤ E(x2)

2
,

where the final inequality uses symmetry of F again. The final case b1 ≤ 0 ≤ b2 ≤ −b1
follows by a symmetric argument. The proof of Claim 2 is completely analogous, with
pmax = p[a1,a2]c by Proposition 1. �

We now proceed to prove the theorem. Given Claim 1, we have x̃2z
∗
(̃z, x̃z;Eff) =

min(IF;max(̃z, x̃z), a∗(̃z, x̃z)) by (31), and hence suppressing some z̃ dependences

h(x̃z) ≡ det
(
M(popt;̃z,x̃z)

) =
{
h∗(x̃z), g(x̃z) ≥ a∗(̃z, x̃z),

det
(
M(pmax;̃z,x̃z)

)
, g(x̃z) ≤ a∗(̃z, x̃z),

where g(x̃z) ≡ IF;max(̃z, x̃z) and h∗(x̃z) is defined by substituting Ep(x2z) = a∗(̃z, x̃z)

into (29). We must show that h(x̃z) is decreasing on x̃z > 0.
First, we compute h∗(x̃z) = (E(x2))2M2

11/(E(x2)(1 − z̃2)) and note it is decreasing in x̃z

since M11 is positive (Corollary 1) and decreasing in x̃z on [0, x̃zmax(̃z)]. Next, we show
det(M(pmax;̃z,x̃z)) is decreasing in x̃z. Note (a1, a2) are the unique solutions to the system

F(a1) + 1 − F(a2) = (1 + z̃)/2,

E
(
x
(
1(x < a1) + 1(x > a2)

)) = x̃z/2.

By the implicit function theorem (e.g., de Oliveira (2018) since we do not require continuity
of f )), it follows that a1 = a1(x̃z) and a2 = a2(x̃z) are differentiable and satisfy

f (a1)a
′
1(x̃z) − f (a2)a

′
2(x̃z) = 0 and(32)

a1f (a1)a
′
1(x̃z) − a2f (a2)a

′
2(x̃z) = 1/2.(33)

Equations (32) and (33) imply that

g′(x̃z) = ∂

∂x̃z
Ep[a1,a2]c

(
x2z

) = 2a2
1f (a1)a

′
1(x̃z) − 2a2

2f (a2)a
′
2(x̃z) = a1 + a2 < 0.

The inequality follows by the assumption z̃ < 0, which ensures a1 and a2 must have
different signs, and then noting that Epmax(xz) > 0 requires E(xpmax(x)1(x > 0)) >

−E(xpmax(x)1(x < 0)) = E(xpmax(−x)1(x > 0)), the equality following by symmetry of
F . Thus, for all x̃z > 0 such that g(x̃z) ≤ a∗(̃z, x̃z) = −z̃(x̃z)2/(1 − z̃2) we have

E(x2)∂ det(M(pmax))

∂x̃z
= g(x̃z)

(−2
(
1 − z̃2)

g′(x̃z) − 4(x̃z · z̃))
− 2(x̃z)2 · z̃g′(x̃z) + 4(x̃z)

(
(x̃z)2 −E

(
x2))

≤ 4(x̃z)3(̃z)2

1 − z̃2 + 4(x̃z)
(
(x̃z)2 −E

(
x2)) = −4M11 · (x̃z)E(x2)

1 − z̃2 .

The RHS is negative (Corollary 1), so det(M(pmax;̃z,x̃z)) is in fact decreasing in x̃z > 0.
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Finally, we fix 0 ≤ x1 < x2 ≤ x̃zmax(̃z) and show h(x1) > h(x2). Note g(x̃z) ≡ g(x̃z) −
a∗(̃z, x̃z) is continuous in x̃z, and h∗(x̃z) ≥ det(M(pmax;̃z,x̃z)). We now carry out casework
on the signs of ḡ(x1) and ḡ(x2).

g(x1) ≥ 0: In this case,

h(x1) = h∗(x1) > h∗(x2) ≥ h(x2).(34)

g(x1) < 0 and g(x2) ≥ 0: Define S = {x ∈ [x1, x2]|g(x) ≥ 0}, which contains x2. Letting
x3 = infS > x1, we have g(x3) = 0 and g(x) ≤ 0 for x ∈ [x1, x3], so

h(x1) = det
(
M(pmax;̃z,x1)

)
> det

(
M(pmax;̃z,x3)

) = h∗(x3) ≥ h∗(x2) = h(x2)(35)

g(x1) < 0 and g(x2) < 0: In this case, either g(x) ≤ 0 on [x1, x2] (so h(x1) =
det(M(pmax;̃z,x1)) > det(M(pmax;̃z,x2)) = h(x2)), or S as defined in the previous case is
nonempty with x3 = inf(S) and x4 = sup(S) satisfying x1 < x3 ≤ x4 < x2 and g(x3) =
g(x4) = 0. Then

h(x1)
(35)
> h(x3)

(34)≥ h(x4)
(35)
> h(x2),

which shows the theorem when z̃ < 0. The proof of the case z̃ > 0 is completely symmetric,
and relies on Claim 2.

APPENDIX E: PROOF OF THEOREM 4

First, we fix z̃ < 0. It suffices to show that assuming E(x2) < F−1(1)2, there exists δ > 0
such that (∂/∂x̃z)det(M(p

†
opt;̃z,x̃z)) > 0 whenever x̃z ∈ (0, δ), and that det(M(p

†
opt;̃z,x̃z)) is

continuous in x̃z at x̃z = 0.
From the assumed continuity of F and Proposition 2, we have p†

max(x) = p�,1,t (x), with
z̃ > −1 ensuring F(t) > 0. Again, we suppress the dependence of � and t on (̃z, x̃z) in
our notation for brevity. By the treatment fraction constraint Ep�,1,t

(z) = z̃, we must have
� = 1 − (1 − z̃)/(2F(t)). From the short-term gain constraint Ep�,1,t

(xz) = x̃z, we see

x̃z

2
= (� − 1)E

(
x1(x < t)

) = − 1 − z̃

2F(t)
E

(
x1(x < t)

)
.

We know by Proposition 2 and continuity of F that the two equations above have a unique
solution (�, t) = (�(x̃z), t (x̃z)) for x̃z ∈ (0, x̃zmax(̃z)). Thus, we can differentiate both of the
equations above with respect to x̃z to see that the derivatives of � and t are given by

t ′ = t ′(x̃z) = F(t)2

(1 − z̃)f (t)E((x − t)1(x < t))
and �′ = �′(x̃z) = 1

2E((x − t)1(x < t))
.

Then g(x̃z) ≡ IF;max(̃z, x̃z) = 2(� − 1)E(x21(x < t)) +E(x2) is differentiable as well with

g′(x̃z) = 2�′
E

(
x21(x < t)

) + 2(� − 1)t2f (t)t ′ = 2(1 − �)t2F(t)2 − (1 − z̃)E(x21(x < t))

(1 − z̃)E((t − x)1(x < t))
.

Next, note that g(0) = z̃E(x2) < 0 = a∗(̃z,0), in the notation of (30). By differentiability (and
thus continuity) of a∗(̃z, ·) and g (the latter due to differentiability of � and t), we conclude
that there exists ε > 0 such that a∗(̃z, x̃z) − g(x̃z) ≥ 0 for all x̃z ∈ [0, ε]. By (31), this means
p

†
opt;̃z,x̃z = p

†
max,̃z,x̃z for all x̃z ∈ [0, ε]. Thus, it suffices to show ∂

∂x̃z
det(M(p

†
max;̃z,x̃z)) >

0 for all x̃z ∈ (0, δ), for some δ ≤ ε. Continuity of det(M(p
†
max;̃z,x̃z)) at x̃z = 0 follows

immediately from continuity of g and (29).
As x̃z ↓ 0, we have t (x̃z) ↑ F−1(1) and �(x̃z) ↑ (1 + z̃)/2 and also E((t − x)1(x <

t)) = tF (t) − E(x1(x < t)) ↑ F−1(1). In the case F−1(1) < ∞, we have limx̃z↓0 g′(x̃z) =
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F−1(1) − E(x2)/F−1(1) > 0 by assumption. If F−1(1) = ∞, then g′(x̃z) → ∞ as x̃z ↓ 0.
Finally, we substitute into the formula (29) for det(M) getting

∂ det(M(p
†
max;̃z,x̃z))

∂x̃z
= − 2g′(x̃z)((1 − z̃2)g(x̃z) + z̃(x̃z)2)

E(x2)
− 4g(x̃z)̃z(x̃z)

E(x2)

+ 4(x̃z)3

E(x2)
− 4x̃z.

Since g(x̃z) → z̃ · E(x2) as x̃z ↓ 0, we have (1 − z̃2)g(x̃z) + (x̃z)2z̃ → E(x2)̃zM11 <

0 (Corollary 1). Our analysis of the limiting behavior on g′(x̃z) then indicates that
limx̃z↓0(∂/∂x̃z)det(M(p

†
max;̃z,x̃z)) = −2̃zM11(F

−1(1) −E(x2)/F−1(1)) > 0.

The proof for the case z̃ > 0 is completely analogous. We first show that p
†
opt;̃z,x̃z =

p
†
min;̃z,x̃z whenever x̃z is sufficiently close to 0. Then we note (u, s) is the unique

solution to the equations u = (1 + z̃)/(2(1 − F(s))) and x̃z/2 = (1 + z̃)E(x1(x ≥
s))/(2(1 − F(s))) to compute the derivatives u′(x̃z) and s′(x̃z). This enables us to show
limx̃z↓0(∂/∂x̃z)det(M(p

†
min;̃z,x̃z)) > 0 under the condition E(x2) < F−1(0)2.
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